海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态

张越, 朱虹霓, 王一清, ALYAAZidan, 崔振昂, 吴自军. 海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态[J]. 海洋地质前沿, 2024, 40(5): 27-39. doi: 10.16028/j.1009-2722.2023.148
引用本文: 张越, 朱虹霓, 王一清, ALYAAZidan, 崔振昂, 吴自军. 海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态[J]. 海洋地质前沿, 2024, 40(5): 27-39. doi: 10.16028/j.1009-2722.2023.148
ZHANG Yue, ZHU Hongni, WANG Yiqing, ALYAA Zidan, CUI Zhen'ang, WU Zijun. Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay, Wenchang, Hainan[J]. Marine Geology Frontiers, 2024, 40(5): 27-39. doi: 10.16028/j.1009-2722.2023.148
Citation: ZHANG Yue, ZHU Hongni, WANG Yiqing, ALYAA Zidan, CUI Zhen'ang, WU Zijun. Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay, Wenchang, Hainan[J]. Marine Geology Frontiers, 2024, 40(5): 27-39. doi: 10.16028/j.1009-2722.2023.148

海南文昌清澜湾红树林潮沟地下水溶解碳通量的潮汐动态

  • 基金项目: 国家自然科学基金“海底地下水排泄过程中溶解无机碳的迁移转化及其对海洋的贡献”(41976057),“东海近岸泥质区沉积物铁结合态磷的形成与埋藏: 甲烷厌氧氧化作用的影响”(42276059)
详细信息
    作者简介: 张越(2000—),男,在读硕士,主要从事海洋生物地球化学方面的研究工作. E-mail:zy3311@tongji.edu.cn
    通讯作者: 吴自军(1973—),男,教授,主要从事海洋环境与生物地球化学方面的研究工作. E-mail:wuzj@tongji.edu.cn
  • 中图分类号: P731;P641

Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay, Wenchang, Hainan

More Information
  • 海底地下水排泄(SGD)是陆地溶解碳向海洋输送的一个重要途径。以清澜湾潮沟为研究对象,以盐度为保守参数计算淡水SGD的占比为2.5%~22.7%,平均为13.0%;SGD净流量为0.86×105 m3/d。基于地下水溶解碳浓度,计算出该潮沟输出的溶解无机碳(DIC)和溶解有机碳(DOC)通量分别为5.78×105和0.10×105 mol/d。其中,DIC是潮沟溶解碳输送的主要形式,占总溶解碳的98.3%。低潮时,DOC的49%来源于红树林植物碎屑,51%来源于SGD;DIC的78%来源于SGD,22%来源于红树林沉积物有机质。高潮时,DOC的44%来源于被污染的海水,56%来源于红树林植物碎屑;DIC的65%来源于海水,35%来源于孔隙水交换。红树林潮沟SGD向清澜湾输送了大量的溶解碳,其对近海水体碳酸盐平衡体系的影响需要进一步研究。

  • 加载中
  • 图 1  研究区域与采样点概况

    Figure 1. 

    图 2  高潮和低潮Cl、SO42−、DIC、DOC和POC及其$ \mathrm{\mathrm{\mathit{\mathrm{\delta}}}} $13C值随盐度的变化

    Figure 2. 

    图 3  SGDF/SGD与水深、盐度的时间变化

    Figure 3. 

    图 4  潮沟涨、落潮DIC、DOC通量和水流量

    Figure 4. 

    图 5  水深与222Rn值、DIC、DOC和POC浓度相关性分析(a—d)及 222Rn值与盐度、DIC、DOC和POC浓度相关性分析(e—h)

    Figure 5. 

    图 6  潮沟水体SO42−与Cl相关分析

    Figure 6. 

    图 7  水深、DIC、DOC和POC的时间变化

    Figure 7. 

    图 8  “添加”的碳源线性回归分析

    Figure 8. 

    图 9  低潮和高潮POC、DOC、DIC不同来源贡献比例

    Figure 9. 

    图 10  DIC(左)和DOC(右)质量平衡模型

    Figure 10. 

    表 1  高、低潮盐度、Cl和SO42−浓度、DIC、DOC和POC浓度及其$ \mathrm{\delta } $13C值

    Table 1.  Salinity, concentrations of Cl, SO42−, DIC, DOC, POC, and their δ13C values in high and low tides

    位置盐度
    /psu
    Cl
    /(mmol/L)
    SO42−
    /(mmol/L)
    DIC
    /(mmol/L)
    δ13CDIC
    /‰
    DOC
    /(mmol/L)
    δ13CDOC
    /‰
    POC
    /(mmol/L)
    δ13CPOC
    /‰
    高潮H-0131.64502.0828.591.10−0.430.34−29.232.30−20.93
    H-0232.47524.6529.391.26−0.560.14−25.970.87−20.43
    H-0332.53517.2528.751.25−0.330.29−29.500.71−19.94
    H-0432.16511.2527.641.55−1.590.19−27.50————
    H-0531.36491.5827.621.25−0.670.20−27.261.17−22.27
    H-0630.23474.0326.321.35−1.350.22−26.941.11−23.67
    H-0728.6468.2425.981.30−2.130.25−26.951.35−26.40
    H-0826.59414.7222.601.43−3.640.35−27.002.45−27.76
    H-0930.56488.1827.691.33−1.250.26−27.831.29−24.62
    H-1029.4469.9026.691.30−2.060.25−26.661.49−25.93
    H-1128.43452.5524.001.26−2.490.24−26.831.93−25.98
    H-1228.58444.1825.481.39−2.610.23−26.851.37−26.76
    H-1329.95466.0325.651.21−1.770.26−27.531.00−26.13
    H-1428.99456.4925.021.31−2.270.22−25.680.94−26.66
    H-1528.37460.0525.461.28−2.860.24−26.841.27−26.56
    平均值29.99476.0826.461.30−1.730.25−27.241.38−24.57
    低潮L-0127.36431.1024.071.19−2.480.21−26.40————
    L-0224.76375.6021.241.70−6.030.49−26.865.74−29.63
    L-0321.9346.3718.851.95−6.700.59−26.947.40−29.79
    L-0424.31371.9920.911.93−6.650.48−27.404.22−28.98
    L-0522.89352.8420.212.03−6.820.52−27.446.27−28.97
    L-0625.21364.9720.181.76−7.060.47−27.35.78−28.29
    L-0722.29352.6218.952.19−7.52————8.77−28.66
    平均值24.10370.7820.631.82−6.180.46−27.066.36−29.05
    注:“——”表示无数据。
    下载: 导出CSV
  • [1]

    刘花台,郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展,2014,29(7):774-785.

    [2]

    DZHAMALOV R,SAFRONOVA T. On estimating chemical discharge into the world ocean with groundwater[J]. Water Resources,2002,29:626-631. doi: 10.1023/A:1021176711632

    [3]

    LI L,BARRY D A,STAGNITTI F,et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research,1999,35(11):3253-3259. doi: 10.1029/1999WR900189

    [4]

    LIU Q,CHARETTE M A,HENDERSON P B,et al. Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle[J]. Limnology and Oceanography,2014,59(5):1529-1554. doi: 10.4319/lo.2014.59.5.1529

    [5]

    RODELLAS V,GARCIA-ORELLANA J,MASQUé P,et al. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea[J]. Proceedings of the National Academy of Sciences,2015,112(13):3926-3930. doi: 10.1073/pnas.1419049112

    [6]

    WANG X L,SU K J,CHEN X G,et al. Submarine groundwater discharge-driven nutrient fluxes in a typical mangrove and aquaculture bay of the Beibu Gulf,China[J]. Marine Pollution Bulletin,2021,168(7):112500.

    [7]

    FEELY R A,SABINE C L,LEE K,et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science,2004,305(5682):362-366. doi: 10.1126/science.1097329

    [8]

    CAI W J,WANG Y,KREST J,et al. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet,South Carolina,and the carbon fluxes to the coastal ocean[J]. Geochimica et Cosmochimica Acta,2003,67(4):631-639. doi: 10.1016/S0016-7037(02)01167-5

    [9]

    LIU Q,CHARETTE M A,BREIER C F,et al. Carbonate system biogeochemistry in a subterranean estuary-Waquoit Bay,USA[J]. Geochimica et Cosmochimica Acta,2017,203(2017):422-439.

    [10]

    LIU Y,JIAO J J,LIANG W,et al. Inorganic carbon and alkalinity biogeochemistry and fluxes in an intertidal beach aquifer:implications for ocean acidification[J]. Journal of Hydrology,2021,595:126036. doi: 10.1016/j.jhydrol.2021.126036

    [11]

    WU Z J,ZHU H N,TANG D H,et al. Submarine groundwater discharge as a significant export of dissolved inorganic carbon from a mangrove tidal creek to Qinglan Bay (Hainan Island,China)[J]. Continental Shelf Research,2021,223(3):104451.

    [12]

    WANG G Z,JING W P,WANG S L,et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science and Technology,2014,48(22):13069-13075. doi: 10.1021/es5026867

    [13]

    MCGOWAN K T,MARTIN J B. Chemical composition of mangrove-generated brines in Bishop Harbor,Florida:interactions with submarine groundwater discharge[J]. Marine Chemistry,2007,104(1):58-68.

    [14]

    TAILLARDAT P,ZIEGLER A D,FRIESS D A,et al. Carbon dynamics and inconstant porewater input in a mangrove tidal creek over contrasting seasons and tidal amplitudes[J]. Geochimica et Cosmochimica Acta,2018,237:32-48. doi: 10.1016/j.gca.2018.06.012

    [15]

    BOUILLON S,BORGES A V,CASTANEDA-MOYA E,et al. Mangrove production and carbon sinks:a revision of global budget estimates[J]. Global Biogeochemical Cycles,2008,22(2):1-12.

    [16]

    LIU Y,JIAO J J,CHENG H K. Tracing submarine groundwater discharge flux in Tolo Harbor,Hong Kong (China)[J]. Hydrogeology Journal,2018,26(6):1857-1873. doi: 10.1007/s10040-018-1736-z

    [17]

    TANIGUCHI M. Tidal effects on submarine groundwater discharge into the ocean[J]. Geophysical Research Letters,2002,29(12):21-23.

    [18]

    CALL M,MAHER D,RUIZ-HALPERN S,et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek[J]. Geochimica et Cosmochimica Acta,2015,150:211-225. doi: 10.1016/j.gca.2014.11.023

    [19]

    韩新,曾传智. 清澜港(八门湾)自然保护区红树林调查[J]. 热带林业,2009,37(2):50-51. doi: 10.3969/j.issn.1672-0938.2009.02.018

    [20]

    农寿千,杨小波,李东海,等. 清澜港红树林保护区植物特点研究[J]. 植物科学学报,2011,29(4):459-466.

    [21]

    徐中亮,杨小波,李东海,等. 清澜港红树林植被类型数量分类[J]. 安徽农业科学,2012,40(34):16659-16661,16663. doi: 10.3969/j.issn.0517-6611.2012.34.056

    [22]

    甄佳宁,廖静娟,沈国状. 1987以来海南省清澜港红树林变化的遥感监测与分析[J]. 湿地科学,2019,17(1):44-51.

    [23]

    MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science,2010,2(1):59-88. doi: 10.1146/annurev-marine-120308-081019

    [24]

    DESTOUNI G,PRIETO C. On the possibility for generic modeling of submarine groundwater discharge[J]. Biogeochemistry,66(1):171-186.

    [25]

    TAILLARDAT P,WILLEMSEN P,MARCHAND C,et al. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio,Vietnam)[J]. Journal of Hydrology,2018,563:303-318. doi: 10.1016/j.jhydrol.2018.05.042

    [26]

    CHEN X G,ZHANG F F,LAO Y L,et al. Submarine groundwater discharge-derived carbon fluxes in mangroves:an important component of blue carbon budgets?[J]. Journal of Geophysical Research:Oceans,2018,123(9):6962-6979.

    [27]

    JIANG Z J,LI J Q,QIAO X D,et al. The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay,Shandong,China[J]. Aquaculture,2015,446:167-174. doi: 10.1016/j.aquaculture.2014.12.043

    [28]

    OH Y H,LEE Y W,PARK S,et al. Importance of dissolved organic carbon flux through submarine groundwater discharge to the coastal ocean:results from Masan Bay,the southern coast of Korea[J]. Journal of Marine Systems,2017,173(4):43-48.

    [29]

    BOUILLON S,DEHAIRS F,VELIMIROV B,et al. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay,Kenya)[J]. Journal of Geophysical Research,2007,112(G2):G02018.

    [30]

    BREITHAUPT J L,SMOAK J M,SMITH T J,et al. Organic carbon burial rates in mangrove sediments:strengthening the global budget[J]. Global Biogeochemical Cycles,2012,26(3):GB3011.

    [31]

    RAY R,MICHAUD E,ALLER R C,et al. The sources and distribution of carbon (DOC,POC,DIC) in a mangrove dominated estuary (French Guiana,South America)[J]. Biogeochemistry,2018,138(3):297-321. doi: 10.1007/s10533-018-0447-9

    [32]

    FABER P A,EVRARD V,WOODLAND R J,et al. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets[J]. Limnology and Oceanography,2014,59(5):1749-1763. doi: 10.4319/lo.2014.59.5.1749

    [33]

    MAHER D,GOLSBY-SMITH L,GLEESON J,et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek:the missing mangrove carbon sink?[J]. Limnology and oceanography,2013,58(2):475-488. doi: 10.4319/lo.2013.58.2.0475

    [34]

    SIPPO J Z,MAHER D T,TAIT D R,et al. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect[J]. Global Biogeochemical Cycles,2016,30(5):753-766. doi: 10.1002/2015GB005324

    [35]

    SZYMCZYCHA B,MACIEJEWSKA A,WINOGRADOW A,et al. Bay of puck seepage water dissolved organic carbon dissolved inorganic carbon loads carbon budget Baltic Sea world ocean[J]. Environmental Science,2014,56(2):327-347.

    [36]

    BURNETT W C,PETERSON R N,SANTOS I R,et al. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams[J]. Journal of Hydrology,2010,380(3):298-304.

    [37]

    UNLAND N P,CARTWRIGHT I,ANDERSEN M S,et al. Investigating the spatio-temporal variability in groundwater and surface water interactions:a multi-technique approach[J]. Hydrology and Earth System Sciences,2013,17(9):3437-3453. doi: 10.5194/hess-17-3437-2013

    [38]

    BOUILLON S,MIDDELBURG J J,DEHAIRS F,et al. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege,Tanzania)[J]. Biogeosciences,2007,4(3):311-322. doi: 10.5194/bg-4-311-2007

    [39]

    DITTMAR T,LARA R J. Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in North Brazil[J]. Estuarine,Coastal and Shelf Science,2001,52(2):249-259. doi: 10.1006/ecss.2000.0743

    [40]

    KEELING C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta,1958,13(4):322-334. doi: 10.1016/0016-7037(58)90033-4

    [41]

    韦莉莉,严重玲,叶彬彬,等. C3植物稳定碳同位素组成与盐分的关系[J]. 生态学报,2008,3:1270-1278. doi: 10.3321/j.issn:1000-0933.2008.03.043

    [42]

    朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.

    [43]

    SALEM Z E,AL TEMAMY A M,SALAH M K,et al. Origin and characteristics of brackish groundwater in Abu Madi coastal area,Northern Nile Delta,Egypt[J]. Estuarine,Coastal and Shelf Science,2016,178:21-35. doi: 10.1016/j.ecss.2016.05.015

    [44]

    TELLAM J H. Hydrochemistry of the saline groundwaters of the lower Mersey Basin Permo-Triassic sandstone aquifer,UK[J]. Journal of Hydrology,1995,165(1):45-84.

    [45]

    焦念志. 海洋固碳与储碳:并论微型生物在其中的重要作用[J]. 中国科学(地球科学),2012,42(10):1473-1486.

    [46]

    MIYAJIMA T,TSUBOI Y,TANAKA Y,et al. Export of inorganic carbon from two Southeast Asian mangrove forests to adjacent estuaries as estimated by the stable isotope composition of dissolved inorganic carbon[J]. Journal of Geophysical Research,2009,114(G1):456-466.

    [47]

    LIU J W,CHEN Y Q,WANG Y Q,et al. Greenhouse gases emissions and dissolved carbon export affected by submarine groundwater discharge in a maricultural bay,Hainan Island,China[J]. Science of the Total Environment,2022,857(7):159665.

    [48]

    ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science,2014,6(1):195-219. doi: 10.1146/annurev-marine-010213-135020

    [49]

    MAHER D T,EYRE B D. Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries:implications for global estimates of benthic DOC fluxes[J]. Journal of Geophysical Research(Biogeosciences),2010,115(G4):G04039.

    [50]

    ALONGI D M. Global significance of mangrove blue carbon in climate change mitigation[J]. Sci,2020,2(3):1-15. doi: 10.3390/sci2030067

  • 加载中

(10)

(1)

计量
  • 文章访问数:  599
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2023-06-03
刊出日期:  2024-05-28

目录