Tidal dynamics of dissolved carbon flux in ground water of a mangrove tidal creek in Qinglan Bay, Wenchang, Hainan
-
摘要:
海底地下水排泄(SGD)是陆地溶解碳向海洋输送的一个重要途径。以清澜湾潮沟为研究对象,以盐度为保守参数计算淡水SGD的占比为2.5%~22.7%,平均为13.0%;SGD净流量为0.86×105 m3/d。基于地下水溶解碳浓度,计算出该潮沟输出的溶解无机碳(DIC)和溶解有机碳(DOC)通量分别为5.78×105和0.10×105 mol/d。其中,DIC是潮沟溶解碳输送的主要形式,占总溶解碳的98.3%。低潮时,DOC的49%来源于红树林植物碎屑,51%来源于SGD;DIC的78%来源于SGD,22%来源于红树林沉积物有机质。高潮时,DOC的44%来源于被污染的海水,56%来源于红树林植物碎屑;DIC的65%来源于海水,35%来源于孔隙水交换。红树林潮沟SGD向清澜湾输送了大量的溶解碳,其对近海水体碳酸盐平衡体系的影响需要进一步研究。
Abstract:Submarine groundwater discharge (SGD) is an important pathway for transporting dissolved carbon from land to the ocean. A tidal creek of the Qinglan Bay (Hainan, China) was selected for study in the regard. The field work was conducted in Oct.-Dec., 2019. Results show that the proportion of freshwater SGD in was 2.5%~22.7%, in average of 13.0%, and the net SGD flow rate was 0.86×105 m3/d. Based on the dissolved carbon concentration in groundwater, we estimated that the fluxes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) output from the tidal creek were 5.78×105 mol/d and 0.10×105 mol/d, respectively. Among them, the DIC was the main form of dissolved carbon transported in the tidal creek, accounting for 98.3% of the total dissolved carbon. At low tide, 49% of DOC came from mangrove plant debris, and 51% comes from SGD. In DIC, 78% came from SGD and 22% from organic matter in mangrove sediment. At high tide, 44% of DOC was from contaminated seawater and 56% from mangrove plant debris. In DIC, 65% came from seawater and 35% from pore water exchange. The SGD of mangrove tidal channels transported a large amount of dissolved carbon to the Qinglan Bay, and its impact on the carbonate balance system of nearshore water needs to be clarified in the future.
-
Key words:
- mangrove tidal creek /
- fresh SGD /
- dissolved inorganic carbon /
- stable carbon isotope /
- tidal action
-
-
表 1 高、低潮盐度、Cl−和SO42−浓度、DIC、DOC和POC浓度及其
$ \mathrm{\delta } $ 13C值Table 1. Salinity, concentrations of Cl−, SO42−, DIC, DOC, POC, and their δ13C values in high and low tides
位置 盐度
/psuCl−
/(mmol/L)SO42−
/(mmol/L)DIC
/(mmol/L)δ13CDIC
/‰DOC
/(mmol/L)δ13CDOC
/‰POC
/(mmol/L)δ13CPOC
/‰高潮 H-01 31.64 502.08 28.59 1.10 −0.43 0.34 −29.23 2.30 −20.93 H-02 32.47 524.65 29.39 1.26 −0.56 0.14 −25.97 0.87 −20.43 H-03 32.53 517.25 28.75 1.25 −0.33 0.29 −29.50 0.71 −19.94 H-04 32.16 511.25 27.64 1.55 −1.59 0.19 −27.50 —— —— H-05 31.36 491.58 27.62 1.25 −0.67 0.20 −27.26 1.17 −22.27 H-06 30.23 474.03 26.32 1.35 −1.35 0.22 −26.94 1.11 −23.67 H-07 28.6 468.24 25.98 1.30 −2.13 0.25 −26.95 1.35 −26.40 H-08 26.59 414.72 22.60 1.43 −3.64 0.35 −27.00 2.45 −27.76 H-09 30.56 488.18 27.69 1.33 −1.25 0.26 −27.83 1.29 −24.62 H-10 29.4 469.90 26.69 1.30 −2.06 0.25 −26.66 1.49 −25.93 H-11 28.43 452.55 24.00 1.26 −2.49 0.24 −26.83 1.93 −25.98 H-12 28.58 444.18 25.48 1.39 −2.61 0.23 −26.85 1.37 −26.76 H-13 29.95 466.03 25.65 1.21 −1.77 0.26 −27.53 1.00 −26.13 H-14 28.99 456.49 25.02 1.31 −2.27 0.22 −25.68 0.94 −26.66 H-15 28.37 460.05 25.46 1.28 −2.86 0.24 −26.84 1.27 −26.56 平均值 29.99 476.08 26.46 1.30 −1.73 0.25 −27.24 1.38 −24.57 低潮 L-01 27.36 431.10 24.07 1.19 −2.48 0.21 −26.40 —— —— L-02 24.76 375.60 21.24 1.70 −6.03 0.49 −26.86 5.74 −29.63 L-03 21.9 346.37 18.85 1.95 −6.70 0.59 −26.94 7.40 −29.79 L-04 24.31 371.99 20.91 1.93 −6.65 0.48 −27.40 4.22 −28.98 L-05 22.89 352.84 20.21 2.03 −6.82 0.52 −27.44 6.27 −28.97 L-06 25.21 364.97 20.18 1.76 −7.06 0.47 −27.3 5.78 −28.29 L-07 22.29 352.62 18.95 2.19 −7.52 —— —— 8.77 −28.66 平均值 24.10 370.78 20.63 1.82 −6.18 0.46 −27.06 6.36 −29.05 注:“——”表示无数据。 -
[1] 刘花台,郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展,2014,29(7):774-785.
[2] DZHAMALOV R,SAFRONOVA T. On estimating chemical discharge into the world ocean with groundwater[J]. Water Resources,2002,29:626-631. doi: 10.1023/A:1021176711632
[3] LI L,BARRY D A,STAGNITTI F,et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research,1999,35(11):3253-3259. doi: 10.1029/1999WR900189
[4] LIU Q,CHARETTE M A,HENDERSON P B,et al. Effect of submarine groundwater discharge on the coastal ocean inorganic carbon cycle[J]. Limnology and Oceanography,2014,59(5):1529-1554. doi: 10.4319/lo.2014.59.5.1529
[5] RODELLAS V,GARCIA-ORELLANA J,MASQUé P,et al. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea[J]. Proceedings of the National Academy of Sciences,2015,112(13):3926-3930. doi: 10.1073/pnas.1419049112
[6] WANG X L,SU K J,CHEN X G,et al. Submarine groundwater discharge-driven nutrient fluxes in a typical mangrove and aquaculture bay of the Beibu Gulf,China[J]. Marine Pollution Bulletin,2021,168(7):112500.
[7] FEELY R A,SABINE C L,LEE K,et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science,2004,305(5682):362-366. doi: 10.1126/science.1097329
[8] CAI W J,WANG Y,KREST J,et al. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet,South Carolina,and the carbon fluxes to the coastal ocean[J]. Geochimica et Cosmochimica Acta,2003,67(4):631-639. doi: 10.1016/S0016-7037(02)01167-5
[9] LIU Q,CHARETTE M A,BREIER C F,et al. Carbonate system biogeochemistry in a subterranean estuary-Waquoit Bay,USA[J]. Geochimica et Cosmochimica Acta,2017,203(2017):422-439.
[10] LIU Y,JIAO J J,LIANG W,et al. Inorganic carbon and alkalinity biogeochemistry and fluxes in an intertidal beach aquifer:implications for ocean acidification[J]. Journal of Hydrology,2021,595:126036. doi: 10.1016/j.jhydrol.2021.126036
[11] WU Z J,ZHU H N,TANG D H,et al. Submarine groundwater discharge as a significant export of dissolved inorganic carbon from a mangrove tidal creek to Qinglan Bay (Hainan Island,China)[J]. Continental Shelf Research,2021,223(3):104451.
[12] WANG G Z,JING W P,WANG S L,et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science and Technology,2014,48(22):13069-13075. doi: 10.1021/es5026867
[13] MCGOWAN K T,MARTIN J B. Chemical composition of mangrove-generated brines in Bishop Harbor,Florida:interactions with submarine groundwater discharge[J]. Marine Chemistry,2007,104(1):58-68.
[14] TAILLARDAT P,ZIEGLER A D,FRIESS D A,et al. Carbon dynamics and inconstant porewater input in a mangrove tidal creek over contrasting seasons and tidal amplitudes[J]. Geochimica et Cosmochimica Acta,2018,237:32-48. doi: 10.1016/j.gca.2018.06.012
[15] BOUILLON S,BORGES A V,CASTANEDA-MOYA E,et al. Mangrove production and carbon sinks:a revision of global budget estimates[J]. Global Biogeochemical Cycles,2008,22(2):1-12.
[16] LIU Y,JIAO J J,CHENG H K. Tracing submarine groundwater discharge flux in Tolo Harbor,Hong Kong (China)[J]. Hydrogeology Journal,2018,26(6):1857-1873. doi: 10.1007/s10040-018-1736-z
[17] TANIGUCHI M. Tidal effects on submarine groundwater discharge into the ocean[J]. Geophysical Research Letters,2002,29(12):21-23.
[18] CALL M,MAHER D,RUIZ-HALPERN S,et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek[J]. Geochimica et Cosmochimica Acta,2015,150:211-225. doi: 10.1016/j.gca.2014.11.023
[19] 韩新,曾传智. 清澜港(八门湾)自然保护区红树林调查[J]. 热带林业,2009,37(2):50-51. doi: 10.3969/j.issn.1672-0938.2009.02.018
[20] 农寿千,杨小波,李东海,等. 清澜港红树林保护区植物特点研究[J]. 植物科学学报,2011,29(4):459-466.
[21] 徐中亮,杨小波,李东海,等. 清澜港红树林植被类型数量分类[J]. 安徽农业科学,2012,40(34):16659-16661,16663. doi: 10.3969/j.issn.0517-6611.2012.34.056
[22] 甄佳宁,廖静娟,沈国状. 1987以来海南省清澜港红树林变化的遥感监测与分析[J]. 湿地科学,2019,17(1):44-51.
[23] MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science,2010,2(1):59-88. doi: 10.1146/annurev-marine-120308-081019
[24] DESTOUNI G,PRIETO C. On the possibility for generic modeling of submarine groundwater discharge[J]. Biogeochemistry,66(1):171-186.
[25] TAILLARDAT P,WILLEMSEN P,MARCHAND C,et al. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio,Vietnam)[J]. Journal of Hydrology,2018,563:303-318. doi: 10.1016/j.jhydrol.2018.05.042
[26] CHEN X G,ZHANG F F,LAO Y L,et al. Submarine groundwater discharge-derived carbon fluxes in mangroves:an important component of blue carbon budgets?[J]. Journal of Geophysical Research:Oceans,2018,123(9):6962-6979.
[27] JIANG Z J,LI J Q,QIAO X D,et al. The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay,Shandong,China[J]. Aquaculture,2015,446:167-174. doi: 10.1016/j.aquaculture.2014.12.043
[28] OH Y H,LEE Y W,PARK S,et al. Importance of dissolved organic carbon flux through submarine groundwater discharge to the coastal ocean:results from Masan Bay,the southern coast of Korea[J]. Journal of Marine Systems,2017,173(4):43-48.
[29] BOUILLON S,DEHAIRS F,VELIMIROV B,et al. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay,Kenya)[J]. Journal of Geophysical Research,2007,112(G2):G02018.
[30] BREITHAUPT J L,SMOAK J M,SMITH T J,et al. Organic carbon burial rates in mangrove sediments:strengthening the global budget[J]. Global Biogeochemical Cycles,2012,26(3):GB3011.
[31] RAY R,MICHAUD E,ALLER R C,et al. The sources and distribution of carbon (DOC,POC,DIC) in a mangrove dominated estuary (French Guiana,South America)[J]. Biogeochemistry,2018,138(3):297-321. doi: 10.1007/s10533-018-0447-9
[32] FABER P A,EVRARD V,WOODLAND R J,et al. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets[J]. Limnology and Oceanography,2014,59(5):1749-1763. doi: 10.4319/lo.2014.59.5.1749
[33] MAHER D,GOLSBY-SMITH L,GLEESON J,et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek:the missing mangrove carbon sink?[J]. Limnology and oceanography,2013,58(2):475-488. doi: 10.4319/lo.2013.58.2.0475
[34] SIPPO J Z,MAHER D T,TAIT D R,et al. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect[J]. Global Biogeochemical Cycles,2016,30(5):753-766. doi: 10.1002/2015GB005324
[35] SZYMCZYCHA B,MACIEJEWSKA A,WINOGRADOW A,et al. Bay of puck seepage water dissolved organic carbon dissolved inorganic carbon loads carbon budget Baltic Sea world ocean[J]. Environmental Science,2014,56(2):327-347.
[36] BURNETT W C,PETERSON R N,SANTOS I R,et al. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams[J]. Journal of Hydrology,2010,380(3):298-304.
[37] UNLAND N P,CARTWRIGHT I,ANDERSEN M S,et al. Investigating the spatio-temporal variability in groundwater and surface water interactions:a multi-technique approach[J]. Hydrology and Earth System Sciences,2013,17(9):3437-3453. doi: 10.5194/hess-17-3437-2013
[38] BOUILLON S,MIDDELBURG J J,DEHAIRS F,et al. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege,Tanzania)[J]. Biogeosciences,2007,4(3):311-322. doi: 10.5194/bg-4-311-2007
[39] DITTMAR T,LARA R J. Driving forces behind nutrient and organic matter dynamics in a mangrove tidal creek in North Brazil[J]. Estuarine,Coastal and Shelf Science,2001,52(2):249-259. doi: 10.1006/ecss.2000.0743
[40] KEELING C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta,1958,13(4):322-334. doi: 10.1016/0016-7037(58)90033-4
[41] 韦莉莉,严重玲,叶彬彬,等. C3植物稳定碳同位素组成与盐分的关系[J]. 生态学报,2008,3:1270-1278. doi: 10.3321/j.issn:1000-0933.2008.03.043
[42] 朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.
[43] SALEM Z E,AL TEMAMY A M,SALAH M K,et al. Origin and characteristics of brackish groundwater in Abu Madi coastal area,Northern Nile Delta,Egypt[J]. Estuarine,Coastal and Shelf Science,2016,178:21-35. doi: 10.1016/j.ecss.2016.05.015
[44] TELLAM J H. Hydrochemistry of the saline groundwaters of the lower Mersey Basin Permo-Triassic sandstone aquifer,UK[J]. Journal of Hydrology,1995,165(1):45-84.
[45] 焦念志. 海洋固碳与储碳:并论微型生物在其中的重要作用[J]. 中国科学(地球科学),2012,42(10):1473-1486.
[46] MIYAJIMA T,TSUBOI Y,TANAKA Y,et al. Export of inorganic carbon from two Southeast Asian mangrove forests to adjacent estuaries as estimated by the stable isotope composition of dissolved inorganic carbon[J]. Journal of Geophysical Research,2009,114(G1):456-466.
[47] LIU J W,CHEN Y Q,WANG Y Q,et al. Greenhouse gases emissions and dissolved carbon export affected by submarine groundwater discharge in a maricultural bay,Hainan Island,China[J]. Science of the Total Environment,2022,857(7):159665.
[48] ALONGI D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science,2014,6(1):195-219. doi: 10.1146/annurev-marine-010213-135020
[49] MAHER D T,EYRE B D. Benthic fluxes of dissolved organic carbon in three temperate Australian estuaries:implications for global estimates of benthic DOC fluxes[J]. Journal of Geophysical Research(Biogeosciences),2010,115(G4):G04039.
[50] ALONGI D M. Global significance of mangrove blue carbon in climate change mitigation[J]. Sci,2020,2(3):1-15. doi: 10.3390/sci2030067
-