莱州湾南岸浅层和深层地下水地球化学特征

孙增兵, 刘森, 王江波, 马健, 李汞, 侯国华. 莱州湾南岸浅层和深层地下水地球化学特征[J]. 海洋地质前沿, 2024, 40(7): 68-79. doi: 10.16028/j.1009-2722.2023.153
引用本文: 孙增兵, 刘森, 王江波, 马健, 李汞, 侯国华. 莱州湾南岸浅层和深层地下水地球化学特征[J]. 海洋地质前沿, 2024, 40(7): 68-79. doi: 10.16028/j.1009-2722.2023.153
SUN Zengbing, LIU Sen, WANG Jiangbo, MA Jian, Li Gong, HOU Guohua. The characteristics of shallow and deep groundwater in Southern Laizhou Bay[J]. Marine Geology Frontiers, 2024, 40(7): 68-79. doi: 10.16028/j.1009-2722.2023.153
Citation: SUN Zengbing, LIU Sen, WANG Jiangbo, MA Jian, Li Gong, HOU Guohua. The characteristics of shallow and deep groundwater in Southern Laizhou Bay[J]. Marine Geology Frontiers, 2024, 40(7): 68-79. doi: 10.16028/j.1009-2722.2023.153

莱州湾南岸浅层和深层地下水地球化学特征

  • 基金项目: 山东省地矿局海岸带地质环境保护重点实验室开放基金项目(SYS202103)
详细信息
    作者简介: 孙增兵(1974—),男,研究员,主要从事地质矿产与生态环境方面的研究工作. E-mail:Sunzb0721@163.com
    通讯作者: 刘森(1989—),男,博士,副研究员,主要从事海岸带水文地质环境方面的研究工作. E-mail:sen_liu@sdu.edu.cn
  • 中图分类号: P736

The characteristics of shallow and deep groundwater in Southern Laizhou Bay

More Information
  • 莱州湾南岸地下水类型丰富,20世纪70年代以来在地下淡水和卤水开采的背景下形成了较为复杂的地下水环境。通过收集公开发表的地下水数据,结合已有的野外监测数据,对研究区浅层地下水与深层地下水水化学特征进行分析。结果表明:浅层地下水与外界联系密切,受持续性、阶段性降水和地下水开采的综合影响,整体表现为气象-开采型。深层地下水的卤水区表现为开采型,其余区域表现为气象-开采型。在淡水和卤水的开采条件下,形成2个规模较大的地下水降落漏斗,地下水最低水位分别为−8.78 m和−44.60 m。依据研究区地下水水质分布和水位特征,对地下水进行分区讨论。自南向北,浅层地下水划分为地下水径流区(S-1区)、地下水强烈混合区(S-2区)和地下水-海水相互作用区(S-3区)。S-1区受降雨入渗、山前侧向补给和地表径流的作用,伴随着长石风化和碳酸盐矿物的溶解作用;S-2区受控于地下水降落漏斗的作用,引起淡水和咸水的强烈混合,同时伴有淡水的补给过程;S-3区受卤水地下水漏斗影响明显,易造成海水倒灌地下水,引起地下水与海水的相互作用。深层地下水划分为地下水径流区(D-1区)、地下水混合区(D-2区)和卤水封存区(D-3区)。D-1区地下水受山前侧向补给和浅层地下水的垂向补给,流动过程中主要受水岩相互作用控制,弱于S-1区;D-2区存在淡水和咸水的混合,主要是受弥散作用影响,混合作用较S-2区弱;D-3区地下水平均矿化度(TDS)值高达119 624.94 mg/L,在相对隔水层的作用下,处于封存状态,始终保持高浓度状态,受地下卤水开采影响,水位持续降低。

  • 加载中
  • 图 1  研究区及监测井位置

    Figure 1. 

    图 2  TDS、Cl和EC的相关性分析

    Figure 2. 

    图 3  研究区浅层和深层地下水分区及样品分布

    Figure 3. 

    图 4  研究区监测井地下水水位、EC监测数据动态趋势图

    Figure 4. 

    图 5  研究区浅层和深层地下水Piper图

    Figure 5. 

    图 6  Cl与Na+、Mg2+、Ca2+的关系图

    Figure 6. 

    图 7  研究区浅层和深层地下水Gibbs图

    Figure 7. 

    图 8  白浪河中下游水文地质剖面地下水分区及水化学分布模式

    Figure 8. 

    表 1  研究区地下水监测井资料

    Table 1.  The data of groundwater monitoring wells

    地下水类型 监测井编号 坐标 地下水水质类型
    经度/E 纬度/N
    浅层
    地下水
    ZK06-30 119°09′20″ 36°50′41″ 淡水
    ZK04 119°08′54″ 36°52′07″ 微咸水
    ZK09-30 119°08′57″ 36°53′54″ 咸水
    ZK03-30 119°10′21″ 36°56′15″ 咸水
    ZK08 119°10′52″ 36°57′58″ 咸水
    ZK07-30 119°12′26″ 37°13′10″ 咸水
    深层
    地下水
    ZK09-80 119°08′57″ 36°53′54″ 咸水
    ZK05 119°08′42″ 37°06′33″ 卤水
    ZK07-80 119°12′26″ 37°13′10″ 咸水
    下载: 导出CSV

    表 2  浅层和深层地下水监测井监测时间、水位和EC波动范围

    Table 2.  The groundwater level and EC values fluctuation range of shallow and deep groundwater

    监测井编号 监测日期 地下水水位/m EC波动/(mS/cm)
    浅层地下水 ZK06-30 2014-10—2015-09 0.63~2.11 1.14~1.22
    ZK04 2014-10—2015-09 −8.78~−5.81 1.49~1.19
    ZK09-30 2014-12—2015-09 −3.48~1.02 0.01~28.39
    ZK03-30 2014-10—2015-09 −3.44~3.28 42.86~120
    ZK08 2014-12—2015-09 −5.90~−4.40 20.18~31.70
    ZK07-30 2014-10—2015-09 0.83~1.95 2.51~26.30
    深层地下水 ZK09-80 2014-12—2015-09 −3.03~−0.48 31.42~47.05
    ZK05 2014-10—2015-09 −44.60~−37.18 >120
    ZK07-80 2014-10—2015-09 0.35~1.21 37.22~45.61
    下载: 导出CSV

    表 3  研究区浅层和深层地下水浓度平均值

    Table 3.  Average concentrations of shallow and deep groundwater in study area

    指标 浅层地下水 深层地下水
    S-1区 S-2区 S-3区 D-1区 D-2区 D-3区
    n 62 94 21 7 64 48
    %n/% 35.03 53.11 11.86 5.88 53.78 40.34
    pH 7.80 7.85 7.43 7.72 7.74 7.11
    TDS/ (mg/L) 832.36 5559.51 31360.45 717.94 8264.87 65293.09
    Na+ /(meq/L) 4.26 66.53 402.10 2.65 96.35 812.08
    K+ /(meq/L) 0.09 1.11 6.62 0.09 1.46 15.77
    Mg2+/(meq/L) 3.27 18.05 79.51 2.65 27.12 187.36
    Ca2+/(meq/L) 7.15 8.16 38.11 5.85 10.52 68.39
    SO42−/(meq/L) 2.38 9.77 48.07 1.66 14.52 95.70
    HCO3/(meq/L) 4.33 8.03 8.66 5.05 7.08 5.98
    Cl/(meq/L) 4.88 75.60 494.15 3.34 123.59 1068.87
    注:n代表地下水样品数量;%n代表数量占比。
    下载: 导出CSV
  • [1]

    高茂生,骆永明. 我国重点海岸带地下水资源问题与海水入侵防控[J]. 中国科学院院刊,2016,31(10):1197-1203.

    [2]

    孙晓明,王卫东,徐建国,等. 环渤海地区地下水资源与环境地质问题[M]//中国地质调查局. 海岸带地质环境与城市发展. 北京:大地出版社,2005.

    [3]

    李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展,2011,26(7):685-694.

    [4]

    POST V E A,WERNER A D. Coastal aquifers:scientific advances in the face of global environment challenges[J]. Journal of Hydrology,2017,551:1-3. doi: 10.1016/j.jhydrol.2017.04.046

    [5]

    XUE Y Q,WU J C,YE S J. Hydrogeological and hydrogeochemical studies for salt water intrusion on the coast of Laizhou Bay,China[J]. Ground Water,2010,38:38-45.

    [6]

    FARBER E,VENGOSH A,GAVRIELI I,et al. The geochemistry of groundwater resources in the Jordan Valley:the impact of the Rift Valley brines[J]. Applied Geochemistry,2007,22(3):494-514. doi: 10.1016/j.apgeochem.2006.12.002

    [7]

    GIMENEZ-FORCADA E. Dynamic of seawater interface using hydrochemical facies evolution diagram[J]. Ground Water,2010,48(2):212-216. doi: 10.1111/j.1745-6584.2009.00649.x

    [8]

    ABID K,ZOUARI K,DULINSKI M R,et al. Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia)[J]. Hydrogeology Journal,2011,19:415-27. doi: 10.1007/s10040-010-0668-z

    [9]

    CRUZ-FUENTES T,CABRERA M D C,HEREDIA J,et al. Groundwater salinity and hydrochemical processes in the volcano-sedimentary aquifer of La Aldea,Gran Canaria,Canary Islands,Spain[J]. Science of the Total Environment,2014,484:154-166. doi: 10.1016/j.scitotenv.2014.03.041

    [10]

    TURNADGE C,SMERDO B D. A review of methods for modeling environmental tracers in groundwater:advantage of tracer concentration simulation[J]. Journal of Hydrology,2014,519:3674-3689. doi: 10.1016/j.jhydrol.2014.10.056

    [11]

    CARY L,PETELET-GIRAUD E,BERTRANDG,et al. Origins and process of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco,Brazil):a multi-isotope approach[J]. Science of the Total Environment,2015,530/531:411-429. doi: 10.1016/j.scitotenv.2015.05.015

    [12]

    焦杏春. 地下水水质评价与水资源管理:水文地球化学与同位素方法的应用研究进展[J]. 地质学报,2016,90(9):2476-2489. doi: 10.3969/j.issn.0001-5717.2016.09.025

    [13]

    郑懿珉,高茂生,刘森,等. 晚更新世以来莱州湾南岸地下卤水资源分布特征[J]. 水文地质工程地质,2014,41(5):11-18.

    [14]

    高茂生,郑懿珉,刘森,等. 莱州湾地下卤水形成的古地理条件分析[J]. 地质论评,2015,61(2):393-400.

    [15]

    韩有松,吴洪发. 莱州湾滨海平原地下卤水成因初探[J]. 地质论评,1982,28(2):126-131. doi: 10.3321/j.issn:0371-5736.1982.02.005

    [16]

    韩有松,孟广兰. 中国北方沿海第四纪地下卤水[M]. 北京:科学出版社,1996.

    [17]

    何起祥. 沉积岩和沉积矿床[M]. 北京:地质出版社,1978.

    [18]

    王珍岩,孟广兰,王少青. 渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟[J]. 海洋地质与第四纪地质,2003,23(1):49-53.

    [19]

    王珍岩,韩有松. 第四纪滨海相地下卤水的研究[J]. 海洋科学,1998,22(1):22-24.

    [20]

    HAN D M,KOHFAHL C,SONG X,et al. Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay,China[J]. Applied Geochemistry,2011,26:863-883. doi: 10.1016/j.apgeochem.2011.02.007

    [21]

    HAN D M,SONG X,CURRELL M J,et al. Using chlorofluorocarbons (CFCs) and tritium to improve conceptual model of groundwater flow in the South Coast Aquifers of Laizhou Bay,China[J]. Hydrological Process,2012,26:3614-3629. doi: 10.1002/hyp.8450

    [22]

    杨巧凤,李文鹏,王瑞久,等. 莱州湾沿岸寿光、莱州和龙口地下水的稳定同位素与地球化学[J]. 地质学报,2016,90(4):801-817. doi: 10.3969/j.issn.0001-5717.2016.04.014

    [23]

    杨巧凤,王瑞久,徐素宁,等. 莱州湾南岸卤水的稳定同位素与地球化学特征[J]. 地质论评,2016,62(2):343-352.

    [24]

    冯晨馨,邱隆伟,高茂生,等. 山东半岛北部泥质海岸带地下水水化学演化[J]. 海洋地质前沿,2022,38(12):16-25.

    [25]

    常新月,高茂生,罗锡明,等. 山东北部泥质海岸带白浪河地区地下水水化学演化过程[J]. 海洋地质前沿,2024,40(3):64-74.

    [26]

    吴吉春,吴永祥,林锦,等. 黄渤海沿海地区地下水管理与海水入侵防治研究[J]. 中国环境管理,2018(2):91-92. doi: 10.3969/j.issn.1674-6252.2018.02.017

    [27]

    姚菁. 渤海南岸LZ908孔海陆交互相地层气候代用指标及沉积环境研究[D]. 青岛:中国科学院海洋研究所,2014.

    [28]

    秦蕴珊. 渤海地质[M]. 北京:科学出版社,1985.

    [29]

    毕延凤,于洪军,徐兴永,等. 莱州湾南岸平原地下水化学特征研究[J]. 海洋通报,2012,31(3):241-247. doi: 10.3969/j.issn.1001-6392.2012.03.001

    [30]

    刘中业,徐建国,祁晓凡,等. 地下水电导率与矿化度相关关系分析:以鲁北平原为例[J]. 山东国土资源,2013,29(水工环专刊):57-64.

    [31]

    吴诗怡. 塔克拉玛干沙漠地下水矿化度与电导率关系的研究[J]. 中国沙漠,1996,16(4):374-378.

    [32]

    DU Y,MA T,CHEN L,et al. Genesis of salinized groundwater in Quaternary aquifer system of coastal plain,Laizhou Bay,China:geochemical evidences,especially from bromine stable isotope[J]. Applied Geochemistry,2015,59:155-165. doi: 10.1016/j.apgeochem.2015.04.017

    [33]

    ZHANG X Y,MIAO J,HU B X,et al. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay,China)[J]. Environmental Science And Pollution Research,2017,24(26):21073-21090. doi: 10.1007/s11356-017-9641-x

    [34]

    LIU S,GAO M S,TANG Z H,et al. Responses of submarine groundwater to silty-sand coast reclamation:a case study in south of Laizhou Bay,China[J]. Estuarine,Coastal and Shelf Science,2016,181:51-60. doi: 10.1016/j.ecss.2016.08.012

    [35]

    LIU S,TANG Z H,GAO M S,et al. Evolutionary process of saline-water intrusion in Holocene and Late Pleistocene groundwater in southern Laizhou Bay[J]. Science of Total Environment,2017,607/608:586-599.

    [36]

    LYU M,PANG Z H,HUANG T M,et al. Hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin,Northwest China[J]. Journal of Radioanalytical and Nuclear Chemistry,2019,320(3):865-883. doi: 10.1007/s10967-019-06515-8

    [37]

    THUY T N,KAWAMURA A,THANH N T,et al. Clustering spatio-seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta,Vietnam[J]. Journal of Hydrology,2015,a,522:661-673.

    [38]

    THUY T N,KAWAMURA A,THANH N T,et al. Identification of spatio-seasonal hydrogeochemical characteristics of the unconfined groundwater in the Red River Delta,Vietnam[J]. Applied Geochemistry,2015,b,63:10-21.

    [39]

    RAJU N J,SHUKLA U K,RAM P. Hydrogeochemistry for the assessment of groundwater quality in Varanasi:a fast-urbanizing center in Uttar Pradesh,India[J]. Environ Monit Assess,2011,173:1-4. doi: 10.1007/s10661-010-1365-z

  • 加载中

(8)

(3)

计量
  • 文章访问数:  292
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2023-06-12
刊出日期:  2024-07-28

目录