Changes of gas hydrate stability zone and fluid overpressure over the past 25 ka at GMGS2-16 site in the Dongsha area of northern South China Sea
-
摘要:
海平面下降和海底温度上升可以引起海底水合物分解,进而导致天然气水合物稳定带底界处沉积物孔隙形成超压,一旦超压积聚突破地层有效应力,就会在海底产生甲烷渗漏。本文通过建立与此相关的稳定带底界变化的数值模型,以分析南海北部东沙海域GMGS2-16水合物钻探站位25 ka BP以来稳定带底界的动态变化。结果显示,在海平面上升的大背景下,海底温度的波动是稳定带底界动态变化的主要因素,主导了水合物生成和分解的周期性变化。底水温度升高导致稳定带底界上移,水合物分解,造成大量甲烷气体的释放,然而这种响应呈现一定的滞后,大约滞后1~3 ka。此外,水合物钻探获取的相应层位沉积物中出现了Mo元素富集的现象,表明稳定带底界上升及水合物分解形成的气体超压可以形成海底冷泉活动。因此,天然气水合物分解可能是冷泉渗漏活动的驱动机制。
Abstract:The decrease in sea level and the increase in seafloor temperature may lead to an upward shift of the base of the hydrate stability zone. This shift could trigger the decomposition of marine gas hydrates, resulting in the generation of overpressure within the sediment pore spaces near the base of hydrate stability zone. We developed a numerical model to simulate the dynamic movement of the base of the gas hydrate stability zone over the period of 0-25 ka BP in the Dongsha area, located in the northern part of the South China Sea. The simulation results indicate that fluctuation in seafloor temperature is the primary factor on the movement of the base of the hydrate stability zone, especially in the context of rising sea levels. The temperature fluctuation dominates the cyclic processes of hydrate formation and decomposition. An increase in bottom water temperature would result in an upward shift of the lower boundary of the stability zone, leading to the decomposition of hydrates and the subsequent release of significant amounts of methane gas. Notably, this response exhibits a lag of approximately 1-3 ka. Furthermore, the corresponding sediment layers that were drilled show an enrichment of molybdenum (Mo) elements, suggesting that the overpressure generated by the bottom boundary rise of the stability zone and the decomposition of hydrates may contribute to the formation of cold seep activities at seafloor. Therefore, the decomposition of gas hydrates may serve as a driving mechanism for cold seepage activities.
-
-
[1] SLOAN E D,KOH C A. Clathrate Hydrates of Natural Gases[M]. Boca Raton:CRC Press,2007.
[2] KVENVOLDEN K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics,1993,31(2):173-187. doi: 10.1029/93RG00268
[3] 刘杰,金光荣,邬黛黛,等. 末次冰期以来珠江口盆地深水区天然气水合物稳定带演化[J]. 新能源进展,2020,8(4):272-281.
LIU J,JIN G R,WU D D,et al. Evolution of gas hydrate stability zone in deep water area of Pearl River Mouth Basin since the Last Glacial Period[J]. Advances in New and Renewable Energy,2020,8(4):272-281.
[4] 祝有海,庞守吉,王平康,等. 中国天然气水合物资源潜力及试开采进展[J]. 沉积与特提斯地质,2021,41(4):524-535.
ZHU Y H,PANG S J,WANG P K,et al. A review of the resource potentials and test productions of natural gas hydrates in China[J]. Sedimentary Geology and Tethyan Geology,2021,41(4):524-535.
[5] 张光学,梁金强,陆敬安,等. 南海东北部陆坡天然气水合物藏特征[J]. 天然气工业,2014,34(11):1-10.
ZHANG G X,LIANG J Q,LU J A,et al. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea[J]. Natural Gas Industry,2014,34(11):1-10.
[6] 郭依群,杨胜雄,梁金强,等. 南海北部神狐海域高饱和度天然气水合物分布特征[J]. 地学前缘,2017,24(4):24-31.
GUO Y Q,YANG S X,LIANG J Q,et al. Characteristics of high gas hydrate distribution in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers,2017,24(4):24-31
[7] 宁伏龙,梁金强,吴能友,等. 中国天然气水合物赋存特征[J]. 天然气工业,2020,40(8):1-24.
NING F L,LIANG J Q,WU N Y,et al. Reservoir characteristics of natural gas hydrates in China[J]. Natural Gas Industry,2020,40(8):1-24.
[8] 毛雪莲,朱继田,宋鹏,等. 琼东南盆地深水区天然气水合物稳定域分布特征与预测[J]. 海洋地质前沿,2021,37(10):58-63.
MAO X L,ZHU J T,SONG P,et al. Preliminary study of the gas hydrate stability zone in the deep-water of Qiongdongnan Basin[J]. Marine Geology Frontiers,2021,37(10):58-63.
[9] MIENERT J,VANNESTE M,BUNZ S,et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide[J]. Marine and Petroleum Geology,2005,22(1/2):233-244.
[10] DICKENS G R. Rethinking the global carbon cycle with a large,dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters,2003,213(3/4):169-183.
[11] DICKENS G R,O’NEIL J R,REA D K,et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography,1995,10(6):965-971. doi: 10.1029/95PA02087
[12] CHEN F,WANG X D,LI N,et al. Gas hydrate dissociation during sea-level highstand inferred from U/Th dating of seep carbonate from the South China Sea[J]. Geophysical Research Letters,2019,46(23):13928-13938. doi: 10.1029/2019GL085643
[13] KIM B,ZHANG Y G. Methane hydrate dissociation across the Oligocene-Miocene boundary[J]. Nature Geoscience,2022,15(3):203-209. doi: 10.1038/s41561-022-00895-5
[14] DENG Y N,CHEN F,GUO Q J,et al. Possible links between methane seepages and glacial-interglacial transitions in the South China Sea[J]. Geophysical Research Letters,2021,48(8):e2020GL091429. doi: 10.1029/2020GL091429
[15] WU N Y,ZHANG H Q,YANG S X,et al. Gas hydrate system of Shenhu area,northern South China Sea:geochemical results[J]. Journal of Geological Research,2011,2011:1-10.
[16] LI A,WU N Y,LI Q,et al. Methane seepage caused by gas hydrate dissociation in the mid-Okinawa Trough since the Last Glacial Maximum[J]. Geophysical Research Letters,2023,50(11):e2023GL103375. doi: 10.1029/2023GL103375
[17] TEICHERT B M A,EISENHAUER A,BOHRMANN G,et al. U/Th systematics and ages of authigenic carbonates from hydrate ridge,Cascadia Margin:recorders of fluid flow variations[J]. Geochimica et Cosmochimica Acta,2003,67(20):3845-3857. doi: 10.1016/S0016-7037(03)00128-5
[18] LIU B,CHEN J X,PINHEIRO L M,et al. An insight into shallow gas hydrates in the Dongsha area,South China Sea[J]. Acta Oceanologica Sinica,2021,40(2):136-146. doi: 10.1007/s13131-021-1758-6
[19] LI N,WANG X D,FENG J X,et al. Intermediate water warming caused methane hydrate instability in South China Sea during past interglacials[J]. Geological Society of America Bulletin,2023,136(3/4):917-927.
[20] LIU X,FLEMINGS P B. Dynamic multiphase flow model of hydrate formation in marine sediments[J]. Journal of Geophysical Research,2007,112(B3):B03101.
[21] PANG J Y,NG H J,ZUO J L,et al. Hydrogen gas hydrate-measurements and predictions[J]. Fluid Phase Equilibria,2012,316:6-10. doi: 10.1016/j.fluid.2011.12.006
[22] CHEN D F,CATHLES L M. On the thermal impact of gas venting and hydrate crystallization:thermal impact of gas venting[J]. Journal of Geophysical Research:Solid Earth,2005,110:B11204.
[23] CATHLES L M,CHEN D F. A compositional kinetic model of hydrate crystallization and dissolution[J]. Journal of Geophysical Research:Solid Earth,2004,109(B8):2003JB002910. doi: 10.1029/2003JB002910
[24] CLASS H,HELMIG R,BASTIAN P. Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique[J]. Advances in Water Resources,2002,25:533-550. doi: 10.1016/S0309-1708(02)00014-3
[25] KWON T H,CHO G C. Submarine slope failure primed and triggered by bottom water warming in oceanic hydrate-bearing deposits[J]. Energies,2012,5(8):2849-2873. doi: 10.3390/en5082849
[26] XU W Y,GERMANOVICH L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments:a theoretical approach[J]. Journal of Geophysical Research,2006,111(B1):B01104.
[27] 何雯,曹运诚,陈多福. 东北太平洋Cascadia陆缘Orca滑坡触发机理的数值模拟[J]. 海洋地质与第四纪地质,2023,43(1):180-189.
HE W,CAO Y C,CHEN D F. Modelling of triggering of Orca submarine landslide,Cascadia margin,northeast Pacific[J]. Marine Geology & Quaternary Geology,2023,43(1):180-189.
[28] XU W Y,RUPPEL C. Predicting the occurrence,distribution,and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research,1999,104(B3):5081-5096. doi: 10.1029/1998JB900092
[29] FENG J C,WANG Y,LI X S,et al. Production performance of gas hydrate accumulation at the GMGS2-Site 16 of the Pearl River Mouth Basin in the South China Sea[J]. Journal of Natural Gas Science and Engineering,2015,27:306-320. doi: 10.1016/j.jngse.2015.08.071
[30] 张光学,黄永样,陈邦彦,等. 海域天然气水合物地震学[M]. 北京:海洋出版社,2003.
ZHANG G X,HUANG Y Y,CHEN B Y,et al. Seismology of marine gas hydrates[M]. Beijing:China Ocean Press,2003.
[31] 丛晓荣,曹运诚,苏正,等. 南海北部东沙海域浅层沉积物孔隙水地球化学示踪深部水合物发育特征[J]. 地球化学,2017,46(3):292-300.
CONG X R,CAO Y C,SU Z,et al. Gas hydrate occurrence in subsurface near the Dongsha area at northern South China Sea inferred from the pore water geochemistry of shallow sediments[J]. Geochimica,2017,46(3):292-300.
[32] 黄怡,王淑红,颜文,等. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系[J]. 热带海洋学报,2018,37(4):61-69.
HUANG Y,WANG S H,YAN W,et al. Gas hydrate dissociation event and its relationship with submarine slide in Dongsha Area of northern South China Sea[J] Journal of Tropical Oceanography,2018,37(4):61-69.
[33] 张丙坤. 南海北部深水区天然气水合物相关活动构造类型及成因机制[D]. 青岛:中国海洋大学,2014.
ZHANG B K. The gas hydrate-related active tectonics in the deep-water of the northern South China Sea and its genetic mechanisms[D]. Qingdao:Ocean University of China,2014.
[34] 王玥霖. 南海东沙探区天然气水合物成藏条件和分布主控因素研究[D]. 北京:中国石油大学,2016.
WANG Y L. Accumulation conditions and distribution controlling factors of natural gas hydrate in Dongsha Prospect of South China Sea[D]. Beijing:China University of Petroleum.
[35] 赵洁,王家生,岑越,等. 南海东北部GMGS2-16站位自生矿物特征及对水合物藏演化的指示意义[J]. 海洋地质与第四纪地质,2018,38(5):144-155.
ZHAO J,WANG J S ,CEN Y,et al. Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution[J].Marine Geology & Quaternary Geology,2018,38(5):144-155.
[36] PLAZA-FAVEROLA A,WESTBROOK G K,KER S,et al. Evidence from three-dimensional seismic tomography for a substantial accumulation of gas hydrate in a fluid-escape chimney in the Nyegga Pockmark Field,offshore Norway[J]. Journal of Geophysical Research,2010,115(B8):B08104.
[37] CHEN D F,DONG F. South China Sea seeps[M]. Singapore:Springer,2023.
[38] WAELBROECK C,LABEYRIE L,MICHEL E,et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews,2002,21(1/3):295-305.
[39] MASLIN M,OWEN M,DAY S,et al. Linking continental-slope failures and climate change:testing the clathrate gun hypothesis[J]. Geology,2004,32(1):53-56. doi: 10.1130/G20114.1
[40] ELDERFIELD H,GREAVES M,BARKER S,et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp.[J]. Quaternary Science Reviews,2010,29(1/2):160-169.
[41] BINTANJA R,VAN DE WAL R S W,OERLEMANS J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature,2005,437(7055):125-128. doi: 10.1038/nature03975
[42] HAN X,SUESS E,LIEBETRAU V,et al. Past methane release events and environmental conditions at the upper continental slope of the south china sea:constraints by seep carbonates[J]. International Journal of Earth Sciences,2014,103(7):1873-1887. doi: 10.1007/s00531-014-1018-5
[43] TONG H P,FENG D,CHENG H,et al. Authigenic carbonates from seeps on the northern continental slope of the South China Sea:new insights into fluid sources and geochronology[J]. Marine and Petroleum Geology,2013,43:260-271. doi: 10.1016/j.marpetgeo.2013.01.011
[44] CUTLER K B,EDWARDS R L,TAYLOR F W,et al. Rapid sea-level fall and deep-ocean temperature change since the Last Interglacial Period[J]. Earth and Planetary Science Letters,2003,206(3/4):253-271.
[45] SHACKLETON N J,PISIAS N G. Atmospheric carbon dioxide,orbital forcing,and climate[J]. American Geophysical Union,1985,32:303-318.
[46] SHACKLETON N J,IMBRIE J,HALL M A. Oxygen and carbon isotope record of East Pacific core V19-30:implications for the formation of deep water in the late Pleistocene North Atlantic[J]. Earth and Planetary Science Letters,1983,65(2):233-244. doi: 10.1016/0012-821X(83)90162-0
[47] ZHENG X F,KAO S J,CHEN Z,et al. Deepwater circulation variation in the South China Sea since the Last Glacial Maximum[J]. Geophysical Research Letters,2016,43(16):8590-8599. doi: 10.1002/2016GL070342
[48] MAX L,RIPPERT N,LEMBKE-JENE L,et al. Evidence for enhanced convection of North Pacific intermediate water to the low-latitude Pacific under glacial conditions:glacial North Pacific circulation[J]. Paleoceanography,2017,32(1):41-55. doi: 10.1002/2016PA002994
[49] LAN J Q,ZHANG N N,WANG C X. The destiny of the North Pacific Intermediate Water in the South China Sea[J]. Acta Oceanologica Sinica,2012,31(5):41-45. doi: 10.1007/s13131-012-0234-8
[50] KUBOTA Y,KIMOTO K,ITAKI T,et al. Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg/Ca and stable carbon and oxygen isotopes of benthic foraminifera[J]. Climate of the Past,2015,11(6):803-824. doi: 10.5194/cp-11-803-2015
[51] CAO Y C,CHEN D F,CATHLES L M. A kinetic model for the methane hydrate precipitated from venting gas at cold seep sites at hydrate ridge,Cascadia Margin,Oregon:modeling gas hydrate at hydrate ridge[J]. Journal of Geophysical Research:Solid Earth,2013,118(9):4669-4681. doi: 10.1002/jgrb.50351
[52] SUN S C,ZHAO J,YU D J. Dissociation enthalpy of methane hydrate in salt solution[J]. Fluid Phase Equilibria,2018,456:92-97. doi: 10.1016/j.fluid.2017.10.013
[53] 陈芳,周洋,庄畅,等. 南海东北部冷泉区末次冰期沉积间断及其成因[J]. 海洋地质与第四纪地质,2016,36(2):19-27.
CHEN F,ZHOU Y,ZHUANG C,et al. Origin of the hiatus of the Last Glacial Period in the cold seep area of the northeastern South China Sea[J]. Marine Geology & Quaternary Geology,2016,36(2):19-27.
[54] 陈芳,陆红锋,刘坚,等. 南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J]. 地球科学,2016,41(10):1619-1629.
CHEN F,LU H F,LIU J. Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea[J] Earth Science,2016,41(10):1619-1629.
[55] WANG M Y,CHEN T Y,FENG D,et al. Uranium-thorium isotope systematics of cold-seep carbonate and their constraints on geological methane leakage activities[J]. Geochimica et Cosmochimica Acta,2022,320:105-121. doi: 10.1016/j.gca.2021.12.016
-