Structure of Greenland-Iceland-Faroe Ridge revealed in gravity and magnetic anomalies
-
摘要:
为了深入研究北极地区格陵兰-冰岛-法罗脊及邻区的重磁场及构造特征,系统分析与整理了全球重力数据库V29数据、船测重力异常数据、全球地磁异常网格第3版数据以及航空磁测数据。利用变纬度化磁极方法得到磁力化极异常,进而利用位场边缘识别方法进行位场边缘识别,基于滑动平均法计算自由空间重力和磁力化极局部异常。结合已有的研究成果,深入分析格陵兰-冰岛-法罗脊及邻区的区域断裂构造格架,识别了7组主要断裂。这7组断裂在控制隆坳格架、基底结构与性质方面发挥了重要作用。基于这些主要断裂,划分了格陵兰板块、Kolbeinsey脊、扬马延微陆块、东扬马延深海盆地、格陵兰-冰岛-法罗复杂构造带、Rekjanes脊、Aegir脊和法罗-梅恩兰构造带共8个构造单元,为北极地区的地质勘探提供地质及地球物理资料。
-
关键词:
- 北极地区 /
- 格陵兰-冰岛-法罗脊 /
- 重磁异常 /
- 断裂
Abstract:To study the gravity and magnetic field and tectonic features of the Greenland-Iceland-Faroe Ridge and adjacent areas in the Arctic region, the data from the Global Gravity Database V29, ship gravity anomaly, the third edition of the Earth Magnetic Anomaly Grid at 2 Arc Minute Resolution Version 3, and Aviation Magnetic Measurement were collected and analyzed. The magnetic anomaly by reduction to the pole was obtained by variable latitude polarization, and then the potential field edge was recognized. The free-air gravity anomaly and magnetization poles local anomalies were calculated based on the sliding average method. Combined with available studies, the features of the regional fault structure framework of the Greenland-Iceland-Faroe Ridge and adjacent areas were analyzed and 7 major faults were identified. These faults have played an important role in controlling the uplift framework, basement structure and the properties. Based on the major faults, 8 regional tectonic units were divided, including the Greenland Plate, the Kolbeinsey ridge, the Jan Mayen microcontinent, the east Jan Mayen deep sea basin, the Greenland-Iceland-Faroe complex structural belt, the Rekjanes ridge, the Aegir ridge, and the Faroe-Mainland tectonic belt, providing the geological and geophysical data for future geological exploration in the Arctic region.
-
Key words:
- Arctic region /
- Greenland-Iceland-Faroe Ridge /
- gravity and magnetic anomalies /
- fault
-
-
[1] 张凯逊,韩淑琴,孟秋含,等. 北极地区盆地分类与油气资源分布规律[J]. 地质力学学报,2020,26(6):901-910. doi: 10.12090/j.issn.1006-6616.2020.26.06.071
[2] 李浩武,童晓光. 北极地区油气资源及勘探潜力分析[J]. 中国石油勘探,2010,15(3):73-82. doi: 10.3969/j.issn.1672-7703.2010.03.015
[3] BOTT M H P,BROWITT C W A,STACEY A P. The deep structure of the Iceland-Faeroe Ridge[J]. Marine Geophysical Researches,1971,1(3):328-351. doi: 10.1007/BF00338261
[4] SMALLWOOD J R,STAPLES R K,RICHARDSON K R,et al. Crust generated above the Iceland mantle plume:from continental rift to oceanic spreading center[J]. Journal of Geophysical Research:Solid Earth,1999,104(B10):22885-22902. doi: 10.1029/1999JB900176
[5] HJARTARSON Á,ERLENDSSON Ö,BLISCHKE A. The Greenland-Iceland-Faroe Ridge complex[J]. Geological Society,London,Special Publications,2017,447(1):127-148. doi: 10.1144/SP447.14
[6] FUNCK T,ERLENDSSON Ö,GEISSLER W H,et al. A review of the NE Atlantic conjugate margins based on seismic refraction data[J]. Geological Society,London,Special Publications,2017,447(1):171-205. doi: 10.1144/SP447.9
[7] BOHNHOFF M,MAKRIS J. Crustal structure of the southeastern Iceland-Faeroe Ridge (IFR) from wide aperture seismic data[J]. Journal of Geodynamics,2004,37(2):233-252. doi: 10.1016/j.jog.2004.02.004
[8] FOULGER G R,DORÉ T,EMELEUS C H,et al. The Iceland microcontinent and a continental Greenland-Iceland-Faroe Ridge[J]. Earth-Science Reviews,2020,206:102926. doi: 10.1016/j.earscirev.2019.102926
[9] STAPLES R K,WHITE R S,BRANDSDÓTTIR B,et al. Färoe-Iceland Ridge experiment 1. crustal structure of northeastern Iceland[J]. Journal of Geophysical Research:Solid Earth,1997,102(B4):7849-7866. doi: 10.1029/96JB03911
[10] HAASE C,EBBING J,FUNCK T. A 3D regional crustal model of the NE Atlantic based on seismic and gravity data[J].Geological Society,2017,447(1):233-247. doi: 10.1144/SP447.8
[11] 成林,袁炳强,张春灌,等. 扬马延海脊构造-沉积演化及油气潜力[J]. 现代地质,2017,31(3):450-459. doi: 10.3969/j.issn.1000-8527.2017.03.003
[12] RICHARDSON K R,SMALLWOOD J R,WHITE R S,et al. Crustal structure beneath the Faroe Islands and the Faroe-Iceland Ridge[J]. Tectonophysics,1998,300(1/4):159-180.
[13] YUAN X,KORENAGA J,HOLBROOK W S,et al. Crustal structure of the Greenland-Iceland Ridge from joint refraction and reflection seismic tomography[J]. Journal of Geophysical Research:Solid Earth,2020,125(7):e2020JB019847. doi: 10.1029/2020JB019847
[14] PÁLMASON G,SAEMUNDSSON K. Iceland in relation to the Mid-Atlantic Ridge[J]. Annual Review of Earth and Planetary Sciences,1974,2(1):25-50. doi: 10.1146/annurev.ea.02.050174.000325
[15] 蒋喆,聂凤军,赵元艺,等. 冰岛区域地质及矿产资源特征[J]. 地质通报,2020,39(5):755-764. doi: 10.12097/j.issn.1671-2552.2020.05.016
[16] ASCH K. Geology without national boundaries the 1: 5 million international geological map of Europe and adjacent areas IGME 5000[J]. Episodes, 2006, 29(1): 39-42.
ASCH K. Geology without national boundaries the 1:5 million international geological map of Europe and adjacent areas IGME 5000[J]. Episodes,2006,29(1):39-42.
[17] 张春灌,袁炳强,张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展,2017,32(1):75-82.
[18] 韩梅,张春灌,李想,等. 地球磁异常网格第3版(EMAG2v3)海平面数据质量评估:以东南亚Sulu海及北极Kolbeinsey脊南段为例[J]. 地球物理学进展,2023,38(4):1466-1472. doi: 10.6038/pg2023GG0331
[19] 袁炳强,张春灌. 重磁勘探[M]. 北京:石油工业出版社,2015.
[20] 张春灌,袁炳强,李玉宏. 吐鲁番中南部地区航磁异常特征及其地质意义[J]. 地球物理学进展,2019,34(5):1811-1817. doi: 10.6038/pg2019CC0329
[21] 韩梅,张春灌,李想,等. 利用重磁资料研究楚科奇边缘地构造特征[J]. 地球物理学进展,2022,37(3):945-951. doi: 10.6038/pg2022FF0210
[22] 张春灌,赵敏,袁炳强,等. 利用重磁资料研究北极地区扬马延微陆块中南部断裂构造与油气远景[J]. 石油物探,2023,62(1):173-182. doi: 10.3969/j.issn.1000-1441.2023.01.015
[23] 张冕,张春灌,段祎乐,等. Aegir脊及邻区重磁异常及构造特征[J]. 海洋地质前沿,2023,39(5):64-72. doi: 10.16028/j.1009-2722.2022.230.
-