Homogeneous temperature of plagioclase melt inclusions in volcanic rocks from the Mariana Trough and its implication to magma evolution
-
摘要:
马里亚纳海槽南部安山岩(H5-T3-2)中斜长石结晶温度主要集中在1 050~1 150 ℃,未受到后期岩浆演化的影响。马里亚纳海槽中部玄武质安山岩(H5-T1-3)中斜长石结晶温度主要集中在900~1 050 ℃;英安岩(H5-T1-1)中斜长石结晶温度主要集中在1 050~1 150 ℃。马里亚纳海槽18°N附近玄武岩(H5-T2-2、H5-T2-3)斜长石中熔体包裹体的均一温度主要集中在1 050~1 150 ℃,并呈连续降温趋势,只有少部分在1 000~1 050 ℃的较低温度结晶,边缘部An值骤降则反映岩浆喷出快速冷却的过程;玄武质安山岩(H5-T2-1)斜长石中熔体包裹体的均一温度具有“双峰”式特征,主要分布在850~950 ℃和1 050~1 150 ℃ 2个温度范围。结合斜长石的环带特征及其An值变化特征,分析结果表明,该斜长石有2个明显不同的结晶阶段,发生了岩浆混合作用,且在马里亚纳海槽浅部可能存在温度约为850~950 ℃的岩浆房,岩浆到达浅部岩浆房后发生岩浆混合,最终喷出洋底。马里亚纳海槽18°N附近的岩浆演化过程较为复杂,发生了不同周期的岩浆演化过程。
Abstract:The crystallization temperatures of plagioclase melt inclusions in volcanic rocks from the Mariana Trough was studied. Results show that those in andesite (H5-T3-2) from the southern Mariana Trough are mainly in 1 050~1 150 ℃ and did not affected by later magmatic evolution; those in basaltic andesite (H5-T1-3) from the central Mariana Trough are mainly 900~1 050 ℃; and those in dacite (H5-T1-1) are mainly 1 050~1 150 ℃. The homogenization temperatures of melt inclusions in basalt (H5-T2-2, H5-T2-3) plagioclase near 18°N in the Mariana Trough are mainly 1 050~1 150 ℃, showing a continuous cooling trend, and only a small part crystallizes at a lower temperature of 1 000~1 050 ℃, and the sudden drop in the An value at the edge of plagioclase phenocryst reflects a rapid cooling of the magma ejection. In addition, the homogenization temperature of the melt inclusions in basalt andesite (H5-T2-1) plagioclase showed the characteristics of "bimodal" pattern of 850~950 ℃ and 1 050~1 150 ℃. The banding characteristics and the An value variation of plagioclase indicate that the plagioclase experienced two distinct crystallization stages and magma mixing, and there might be a magma chamber in the shallow part of the Mariana Trough, where the magma chamber temperature is about 850~950 ℃. The magmatic evolution process near 18°N in the Mariana Trough is complex, and different periods of magmatic evolution may occur.
-
Key words:
- Mariana Trough /
- plagioclase feldspar /
- melt inclusions /
- uniform temperature /
- magmatic evolution
-
-
表 1 马里亚纳海槽火山岩样品取样信息
Table 1. Sampling information of the Mariana Trough volcanic rock samples
样品编号 纬度 经度 水深/m HOBAB5-T3-2 12°54′42.400″N 143°38′58.136″E 2 974 HOBAB5-T2-1 18°12′37.372″N 144°42′22.521″E 3 659 HOBAB5-T2-2 18°02′47.637″N 144°45′11.925″E 3 854 HOBAB5-T2-3 18°00′56.720″N 144°45′00.101″E 4 038 HOBAB5-T1-1 21°19′29.319″N 144°11′44.657″E 418 HOBAB5-T1-3 21°29′15.150″N 144°02′29.908″E 1 604 表 2 熔融包裹体均一温度实验升温速率设置
Table 2. The experimental setup of heating rate for homogenization temperature in melt inclusions
速率/(℃/min) 温度上限/℃ 恒温时间/min 30 600 30 10 650 10 10 700 10 10 750 10 10 800 10 10 850 10 10 900 10 10 950 10 10 1000 10 5 1050 10 5 1100 10 5 1150 10 5 1200 10 表 3 马里亚纳海槽火山岩全岩主量元素数据
Table 3. Whole-rock principal element data of volcanic rocks from Mariana Trough
wt% 样品编号 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 TiO2 SiO2 LOI 总值 H5-T3-2 15.07 6.46 10.39 0.58 2.72 0.20 4.22 0.24 1.64 56.78 1.35 99.65 H5-T2-1 16.48 10.17 9.15 0.57 5.76 0.16 3.02 0.18 1.05 52.15 0.73 99.42 H5-T2-2 16.95 10.85 8.18 0.37 7.11 0.15 2.94 0.16 1.11 51.29 0.24 99.35 H5-T2-3 18.19 10.79 7.94 0.44 6.23 0.14 3.05 0.17 1.13 51.11 0.22 99.41 H5-T1-1 15.02 4.50 6.57 2.20 1.68 0.15 4.02 0.28 0.73 63.40 0.93 99.49 H5-T1-3 14.59 11.62 9.28 0.73 7.61 0.16 1.85 0.16 0.65 52.40 0.55 99.60 表 4 马里亚纳海槽火山岩斜长石斑晶中熔体包裹体的均一温度数据
Table 4. Homogeneous temperature data of melt inclusions in plagioclase phenocrysts of volcanic rocks from Mariana Trough
℃ 样品号 H5-T2-1 编号 1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 均一温度 1115 880 1135 900 935 1125 1085 1015 1085 1055 940 编号 5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 7.1 7.2 7.3 均一温度 945 1135 920 1145 885 1110 990 1135 905 860 935 编号 8.1 9.1 9.2 9.3 10.1 10.2 10.3 10.4 11.1 11.2 12.1 均一温度 895 1095 925 1155 1075 1110 1090 1135 1005 960 1185 样品号 H5-T2-2 编号 1.1 1.2 2.1 2.2 2.3 3.1 3.2 4.1 4.2 4.3 4.4 均一温度 1155 1100 1085 1145 1120 1035 1005 1130 1145 1145 1110 编号 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 7.1 7.2 8.1 均一温度 1155 1095 1130 1090 1070 1055 1165 1130 1010 1045 1100 编号 9.1 9.2 10.1 均一温度 1090 1155 1090 样品号 H5-T2-3 编号 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 5.1 均一温度 1050 1095 1080 1050 1065 1085 1125 1120 1130 1145 1120 编号 5.2 5.3 6.1 7.1 7.2 7.3 7.4 8.1 8.2 9.1 9.2 均一温度 1100 1125 1075 1050 1075 1070 1025 1085 1095 1115 1100 编号 10.1 10.2 11.1 11.2 11.3 均一温度 1135 1165 1145 1115 1130 样品号 H5-T1-1 编号 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 5.1 均一温度 955 995 1030 1060 1055 1085 1125 1120 1130 1045 1020 编号 5.2 5.3 6.1 7.1 7.2 7.3 7.4 8.1 8.2 均一温度 1100 1125 1075 980 1040 1110 1025 1035 1095 样品号 H5-T1-3 编号 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 5.1 均一温度 955 975 950 995 1015 935 970 1105 1030 1090 965 编号 5.2 5.3 6.1 7.1 7.2 7.3 7.4 均一温度 990 1005 1085 955 935 910 1095 样品号 H5-T3-2 编号 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2 均一温度 1055 1135 1080 1090 1060 1135 1105 1030 1085 1080 表 5 电子探针分析斜长石的平均成分
Table 5. The average composition of plagioclase analyzed by electron microprobe
样品号 测点个数 Na2O K2O CaO SiO2 FeO MgO Al2O3 TiO2 Cr2O3 MnO 总值 An 平均值 范围 H5-T3-2 30 AVE 4.78 0.05 11.84 53.58 0.71 0.10 28.33 0.07 0.01 0.01 99.47 57.6 55.0~62.0 STD 0.25 0.02 0.39 0.51 0.05 0.01 0.40 0.02 0.02 0.01 0.27 0.02 H5-T2-1 22 AVE 3.95 0.12 13.19 52.41 0.99 0.37 28.74 0.08 0.03 0.01 99.88 64.4 54.6~72.9 STD 0.58 0.09 1.19 1.66 0.38 0.33 1.69 0.07 0.08 0.01 0.43 0.05 H5-T2-2 29 AVE 3.28 0.07 14.77 50.66 0.54 0.21 30.85 0.05 0.01 0.01 100.45 71.0 63.6~74.2 STD 0.24 0.02 0.48 0.58 0.13 0.07 0.60 0.02 0.02 0.01 0.44 0.02 H5-T2-3 29 AVE 3.45 0.06 14.25 50.88 0.73 0.18 30.33 0.07 0.02 0.01 99.97 69.3 61.7~73.5 STD 0.36 0.02 0.65 0.92 0.12 0.05 0.74 0.03 0.02 0.01 0.69 0.03 H5-T1-1 31 AVE 4.85 0.22 11.47 54.37 0.62 0.07 28.05 0.03 0.01 0.01 99.70 55.9 51.0~66.4 STD 0.64 0.09 1.50 6.73 0.10 0.02 3.51 0.03 0.01 0.01 12.42 0.03 H5-T1-3 29 AVE 1.86 0.07 16.97 47.29 0.80 0.13 32.58 0.03 0.03 0.01 99.76 83.1 72.3~86.3 STD 0.42 0.02 0.80 1.13 0.06 0.03 0.85 0.02 0.07 0.01 0.55 0.04 注:AVE 为平均值,单位wt%;STD为标准差。 表 6 典型环带斜长石斑晶成分
Table 6. The composition of typical banded plagioclase phenocryst
wt% 样品 测点 Na2O K2O CaO SiO2 FeO MgO Al2O3 TiO2 Cr2O3 MnO 总值 An H5-T2-1 1 3.03 0.06 14.96 49.97 0.75 0.17 30.98 0.04 0.01 0.00 99.96 72.91 2 3.35 0.07 14.40 50.45 0.82 0.23 30.26 0.03 0.00 0.02 99.62 70.12 3 3.94 0.11 13.57 51.97 0.77 0.19 29.44 0.03 0.04 0.00 100.07 65.16 4 3.39 0.09 14.47 50.41 0.62 0.22 30.36 0.04 0.02 0.02 99.62 69.89 5 3.97 0.10 13.01 52.35 1.27 0.56 28.14 0.08 0.04 0.00 99.51 64.06 6 3.47 0.09 14.16 50.78 0.68 0.18 30.12 0.03 0.01 0.00 99.53 68.90 7 3.94 0.11 13.57 51.97 0.77 0.19 29.44 0.03 0.04 0.00 100.07 65.16 8 5.02 0.14 11.13 55.21 1.19 0.39 26.73 0.06 0.39 0.00 100.25 54.62 H5-T2-2 1 2.92 0.06 15.46 49.94 0.50 0.19 31.55 0.06 0.01 0.00 100.69 74.25 2 3.09 0.04 15.19 49.90 0.49 0.20 31.46 0.06 0.00 0.00 100.43 72.93 3 3.26 0.05 14.98 50.70 0.52 0.24 31.12 0.08 0.06 0.01 101.01 71.54 4 3.22 0.05 14.81 50.81 0.52 0.21 30.88 0.07 0.05 0.00 100.62 71.53 5 3.37 0.07 14.70 50.78 0.55 0.19 30.93 0.06 0.00 0.01 100.64 70.39 6 4.08 0.10 13.13 52.99 1.10 0.52 28.31 0.07 0.00 0.00 100.30 63.64 H5-T1-1 1 5.08 0.21 11.18 54.63 0.66 0.08 27.69 0.08 0.04 0.02 99.66 54.20 2 4.81 0.21 11.63 54.03 0.70 0.08 28.09 0.04 0.01 0.00 99.60 56.51 3 5.10 0.30 10.86 55.42 0.68 0.08 27.31 0.04 0.03 0.00 99.82 53.12 4 4.65 0.20 11.90 53.73 0.59 0.08 28.33 0.01 0.02 0.01 99.53 57.87 5 4.64 0.23 11.82 54.34 0.60 0.07 28.14 0.02 0.00 0.01 99.88 57.68 6 5.22 0.23 10.95 54.91 0.63 0.09 27.55 0.04 0.03 0.01 99.64 52.96 7 4.94 0.24 11.45 54.21 0.66 0.07 27.91 0.07 0.00 0.01 99.57 55.38 表 7 根据 KUDO和 WEILL标定公式[34]计算的斜长石结晶温度
Table 7. The crystallization temperature of plagioclase determined by KUDO and WEILL methods[35]
样品号 测点个数 温度/℃ 平均值 范围 H5-T3-2 30 1 136.42 1 113~1 180 H5-T2-1 22 1 149.01 1 121~1 182 H5-T2-2 29 1 162.19 1 144~1 172 H5-T2-3 29 1 168.59 1 154~1 179 H5-T1-1 31 1 115.62 1 058~1 189 H5-T1-3 29 998.80 981~1 038 表 8 马里亚纳海槽火山岩中斜长石结晶温度对比
Table 8. Comparison in crystallization temperatures of plagioclase in volcanic rocks from Mariana Trough
地区 岩性 取样位置 斜长石结晶温度/℃ 数据来源 马里亚纳海槽安山岩 玄武岩 18°N附近 1 005~1 165 包裹体均一温度 玄武质安山岩 18°N附近
21°N附近850~950,1 050~1 150
935~1 105安山岩 12°50′N附近 1 030~1 135 英安岩 21°N附近 910~1 130 玄武岩 18°N附近 1144 ~1179 矿物-熔体温度计公式 玄武质安山岩 18°N附近
21°N附近1 121~1 182
981~1 038安山岩 12°50′N附近 1 113~1 180 英安岩 21°N附近 1 058~1 189 玄武岩 18°N附近 1 200±25 文献[35] 玄武岩 18°N附近 975~1 212 文献[7] -
[1] ROEDDER E. Origin and significance of magmatic inclusions[J]. Bulletin de Minéralogie,1979,102(5):487-510.
[2] SORBY H C. On the microscopical,structure of crystals,indicating theorigin of minerals and rocks[J]. Quarterly Journal of the Geological Society,1858,14(1/2):453-500.
[3] KENT A J R. Melt inclusions in basaltic and related volcanic rocks[J]. Reviews in Mineralogy and Geochemistry,2008,69(1):273-331. doi: 10.2138/rmg.2008.69.8
[4] 李霓,孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报,2018,37(3):414-423,560.
LI N,SUN J X. Research progress on melt inclusions in volcanic rocks[J]. Mineral and Rock Geochemistry Bulletin,2018,37(3):414-423,560.
[5] 陈小明,谭清泉,赵广涛. 海底玄武岩中斜长石研究及其岩石学意义[J]. 岩石学报,2002,18(4):482-488.
CHEN X M,TAN Q Q,ZHAO G T. Study on plagioclase in submarine basalt and its petrological significance[J]. Chinese Journal of Petrologica Sinica,2002,18(4):482-488.
[6] 鄢全树,石学法,刘季花,等. 南海新生代碱性玄武岩中斜长石矿物的化学成分及意义[J]. 矿物学报,2008,28(2):135-142.
YAN Q S,SHI X F,LIU J H,et al. Chemical composition and significance of plagioclase minerals in the Cenozoic alkaline basalt of the South China Sea[J]. Mineralogical Journal,2008,28(2):135-142.
[7] 张平阳,鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展,2017,35(2):234-248.
ZHANG P Y,YAN Q S. Chemistry and significance of plagioclase minerals in the Mariana Trench basalt[J]. Advances in Marine Science,2017,35(2):234-248.
[8] 曾志刚,张松梅,常丽华. 东海陆架边缘北部玄武岩的矿物及化学特征[J]. 海洋地质与第四纪地质,2002,22(3):47-52.
ZENG Z G,ZHANG S M,CHANG L H. Mineral and chemical characteristics of basalt in the northern margin of the East China Sea continental shelf[J]. Marine Geology and Quaternary Geology,2002,22(3):47-52.
[9] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展,2013,28(7):737-750.
SHI X F,YAN Q S. Magmatic activity in typical marginal basins of the western Pacific[J]. Advances in Earth Sciences,2013,28(7):737-750.
[10] ZAJACZ Z,HALTER W. LA-ICPMS analyses of silicate melt inclusions inco-precipitated minerals:quantification,data analysis and mineral/melt partitioning[J]. Geochimica et Cosmochimica Acta,2007,71(4):1021-1040. doi: 10.1016/j.gca.2006.11.001
[11] PETTKE T,HALTER W E,WEBSTER J D,et al. Accurate quantification of melt inclusion chemistry by LA-ICPMS:a comparison with EMP and SIMS and advantages and possible limitations of these methods[J]. Lithos,2004,78(4):333-361. doi: 10.1016/j.lithos.2004.06.011
[12] HALTER W E,PETTKE T,HEINRICH C A,et al. Major to trace elementanalysis of melt inclusions by laser-ablation ICP-MS:methods of quantification[J]. Chemical Geology,2002,183(1/4):63-86.
[13] SOBOLEV A V,HOFMANN A W,NIKOGOSIAN I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loalavas[J]. Nature,2000,404(6781):986-990. doi: 10.1038/35010098
[14] SAAL A E,HART S R,SHIMIZU N,et al. Pb isotopic variability in meltinclusions from oceanic island basalts,Polynesia[J]. Science,1998,282(5393):1481-1484. doi: 10.1126/science.282.5393.1481
[15] SOBOLEV A V,CHAUSSIDON M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges:implications for H2O storage and recycling in the mantle[J]. Earth and Planetary Science Letters,1996,137(1/4):45-55.
[16] 丁一,刘吉强,宗统,等. 熔体包裹体挥发分应用的研究进展[J]. 岩石矿物学杂志,2019,38(6):897-913.
DING Y,LIU J Q,ZONG T,et al. Research progress on the application of volatiles from melt inclusions[J]. Acta Petrologica et Mineralogica,2019,38(6):897-913.
[17] 任钟元,张乐,吴亚东,等. 熔体包裹体在镁铁质火山岩成因研究中的应用[J]. 矿物岩石地球化学通报,2018,37(3):395-413.
REN Z Y,ZHANG L,WU Y D,et al. Application of melt inclusions in the genetic research of mafic volcanic rocks[J]. Bulletin of Mineralogy,Petrology and Geochemistry. 2018,37(3):395-413.
[18] 李晓辉,杨慧心,曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质,2021,41(1):166-179.
LI X H,YANG H X,ZENG Z G. Research progress on melt inclusions in volcanic rocks in the western Pacific back arc basin[J]. Marine Geology & Quaternary Geology,2021,41(1):166-179.
[19] LAI Z Q,ZHAO G T,HAN Z Z. The magma plumbing system in the Mariana Trough back arc basin at 18°N[J]. Journal of Marine Systems,2018,180:132-139.
[20] MARTÍNEZ F,FRYER P,BAKER N A,et al. Evolution of backarc rifting:Mariana Trough,20°-24°N[J]. Journal of Geophysical Research:Solid Earth,1995,100(B3):3807-3827. doi: 10.1029/94JB02466
[21] MARTINEZ F,FRYER P,BECKER N. Geophysical characteristics of the southern Mariana Trough,11°50′N–13°40′N[J]. Journal of Geophys-ical Research:Solid Earth,2000,105(B7):16591-16607.
[22] STERN R J,FOUCH M J,KLEMPERER S L. An overview of the Izu-Bonin-Mariana subduction factory[J]. Inside the Subduction Factory,2003,138:175-222.
[23] KARIG D E,ANDERSON R N,BIBEE L D. Characteristics of back arc spreading in the Mariana Trough[J]. Journal of Geophysical Re-search:Solid Earth,1978,83(B3):1213-1226. doi: 10.1029/JB083iB03p01213
[24] PEARCE,J A,Stern R J. Origin of back-arc basin magmas:trace element and isotope perspectives[J]. Back-arc Spreading Systems: Washington DCA merican Geophysical Union Geophysical Monograph,2006,166:63-86. doi: 10.1029/166GM06
[25] TIAN L,ZHAO G,ZHAO G,et al. Geochemistry of basaltic lavas from the Mariana Trough:evidence for influence of subduction component on the generation of backarc basin magmas[J]. International Geology Review,2005,47(4):387-397. doi: 10.2747/0020-6814.47.4.387
[26] 吴平霄,吴金平,李才伟,等. 斜长石韵律环带的结晶速率方程及其动力学机制[J]. 岩石学报,1998,14(3):388-394.
WU P X,WU J P,LI C W,et al. Crystalline velocity equation and kinetics mechanism of plagioclase oscillatory zoning[J]. Acta Petrologica Sinica,1998,14(3):388-394.
[27] MATHEZ E A. Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks[J]. Contributions to Mineralogy and Petrology,1973,41(1):61-72. doi: 10.1007/BF00377654
[28] LEBAS M J,LEMAITRE R W,STRECKEISEN A,et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology,1986,27(3):745-750. doi: 10.1093/petrology/27.3.745
[29] Peccerillo A , Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy Petrology,1976,58(1):63-81.
[30] SUGAWARA T. Ferric iron partitioning between plagioclase and silicate liquid:thermodynamics and petrological applications[J]. Contributions to Mineralogy and Petrology,2001,141(6):659-686. doi: 10.1007/s004100100267
[31] GHIORSO M S,SACK R O. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology,1995,119(2/3):197-212.
[32] GHIORSO M S,HIRSCHMANN M,REINERS P W,et al. The pMELTS:a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa[J]. Geochemistry,Geophysics,Geosystems,2002,3(5):1-35.
[33] 张国良. 东太平洋海隆 13°N 附近玄武岩特征及其对岩浆作用的指示[D]. 青岛:中国科学院海洋研究所,2010.
ZHANG G L. Characteristics of basalt near 13°N on the East Pacific Rise and its indication of magmatic activity[D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2010.
[34] KUDO A M,WEILL D F. An igneous plagioclase thermometer[J]. Contributions to Mineralogy and Petrology,1970,25(1):52-65. doi: 10.1007/BF00383062
[35] 孙海青,高爱国,倪培,等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展,2004,22(3):292-298.
SUN H Q,GAO A G,NI P,et al. Preliminary study on melt inclusions in the Mariana Trench basalt[J]. Advances in Marine Science,2004,22(3):292-298.
[36] LI X H,ZENG Z G,YANG H X,et al. Integrated major and trace element study of clinopyroxene in basic,intermediate and acidic volcanic rocks from the middle Okinawa Trough:insights into petrogenesis and the influence of subduction component[J]. Lithos,2020,352/353:105320. doi: 10.1016/j.lithos.2019.105320
[37] LI X H,ZENG Z G,YANG H X,et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks:implications for petrogenesis and variable subducted sediment component injection[J]. Geological Journal,2019,54(3):1160-1189. doi: 10.1002/gj.3217
[38] 李雪丽,曾志刚,李晓辉,等. 冲绳海槽西南部火山岩熔体包裹体的均一温度及对岩浆混合的指示意义[J]. 海洋科学,2021,45(11):82-95.
LI X L, ZENG Z G, LI X H, et al. Homogeneous temperature study of melt inclusions in volcanic rocks from the southwestern Okinawa Trough: insights into magma mixing processes[J]. Marine Sciences,2021,45(11):82-95.
[39] ZHANG G L,ZENG Z G,YIN X B,et al. Periodic mixing of magma near 13°N East Pacific Rise:simulation and plagioclase evidence[J]. Chinese Science: Earth Sciences,2009(1):35-50.
-