马里亚纳海槽火山岩中斜长石熔体包裹体的均一温度及其对岩浆演化的指示意义

张保辉, 曾志刚, 曾志斌, 杨小双, 王晓媛, 齐海燕, 殷学博, 陈帅, 陈祖兴, 韩超. 马里亚纳海槽火山岩中斜长石熔体包裹体的均一温度及其对岩浆演化的指示意义[J]. 海洋地质前沿, 2025, 41(2): 53-67. doi: 10.16028/j.1009-2722.2024.038
引用本文: 张保辉, 曾志刚, 曾志斌, 杨小双, 王晓媛, 齐海燕, 殷学博, 陈帅, 陈祖兴, 韩超. 马里亚纳海槽火山岩中斜长石熔体包裹体的均一温度及其对岩浆演化的指示意义[J]. 海洋地质前沿, 2025, 41(2): 53-67. doi: 10.16028/j.1009-2722.2024.038
ZHANG Baohui, ZENG Zhigang, ZENG Zhibin, YANG Xiaoshuang, WANG Xiaoyuan, QI Haiyan, YIN Xuebo, CHEN Shuai, CHEN Zuxing, HAN Chao. Homogeneous temperature of plagioclase melt inclusions in volcanic rocks from the Mariana Trough and its implication to magma evolution[J]. Marine Geology Frontiers, 2025, 41(2): 53-67. doi: 10.16028/j.1009-2722.2024.038
Citation: ZHANG Baohui, ZENG Zhigang, ZENG Zhibin, YANG Xiaoshuang, WANG Xiaoyuan, QI Haiyan, YIN Xuebo, CHEN Shuai, CHEN Zuxing, HAN Chao. Homogeneous temperature of plagioclase melt inclusions in volcanic rocks from the Mariana Trough and its implication to magma evolution[J]. Marine Geology Frontiers, 2025, 41(2): 53-67. doi: 10.16028/j.1009-2722.2024.038

马里亚纳海槽火山岩中斜长石熔体包裹体的均一温度及其对岩浆演化的指示意义

  • 基金项目: 国家自然科学基金 “深海界面过程和化能生态系统” “冲绳海槽与马里亚纳海槽的热液烟囱体特征及其对流体演化的指示”“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(42221005,42330409,91958213);中国科学院战略性先导科技专项子课题“热液/冷泉区岩浆物质贡献与流体化学过程”(XDB42020402);国家重点基础研究发展计划(973计划)项目“典型弧后盆地热液活动及其成矿机理”(2013CB429700);泰山学者工程(ts201511061)
详细信息
    作者简介: 张保辉(1999—),男,在读硕士,主要从事海底岩石学方面的研究工作. E-mail:1148969010@qq.com
    通讯作者: 曾志刚(1968—),男,博士,研究员,主要从事海底热液活动及成矿方面的研究工作. E-mail:zgzeng@qdio.ac.cn
  • 中图分类号: P736.22+1;Q915

Homogeneous temperature of plagioclase melt inclusions in volcanic rocks from the Mariana Trough and its implication to magma evolution

More Information
  • 马里亚纳海槽南部安山岩(H5-T3-2)中斜长石结晶温度主要集中在1 050~1 150 ℃,未受到后期岩浆演化的影响。马里亚纳海槽中部玄武质安山岩(H5-T1-3)中斜长石结晶温度主要集中在900~1 050 ℃;英安岩(H5-T1-1)中斜长石结晶温度主要集中在1 050~1 150 ℃。马里亚纳海槽18°N附近玄武岩(H5-T2-2、H5-T2-3)斜长石中熔体包裹体的均一温度主要集中在1 050~1 150 ℃,并呈连续降温趋势,只有少部分在1 000~1 050 ℃的较低温度结晶,边缘部An值骤降则反映岩浆喷出快速冷却的过程;玄武质安山岩(H5-T2-1)斜长石中熔体包裹体的均一温度具有“双峰”式特征,主要分布在850~950 ℃和1 050~1 150 ℃ 2个温度范围。结合斜长石的环带特征及其An值变化特征,分析结果表明,该斜长石有2个明显不同的结晶阶段,发生了岩浆混合作用,且在马里亚纳海槽浅部可能存在温度约为850~950 ℃的岩浆房,岩浆到达浅部岩浆房后发生岩浆混合,最终喷出洋底。马里亚纳海槽18°N附近的岩浆演化过程较为复杂,发生了不同周期的岩浆演化过程。

  • 加载中
  • 图 1  马里亚纳海槽岩石取样位置

    Figure 1. 

    图 2  马里亚纳海槽火山岩中斜长石斑晶矿物的不同类型熔体包裹体

    Figure 2. 

    图 3  马里亚纳海槽火山岩主量元素图解

    Figure 3. 

    图 4  马里亚纳海槽玄武岩斜长石中熔体包裹体的均一实验变化过程

    Figure 4. 

    图 5  熔体包裹体均一温度频次

    Figure 5. 

    图 6  斜长石化学成分分类图

    Figure 6. 

    图 7  马里亚纳海槽火山岩典型斜长石斑晶的An值变化

    Figure 7. 

    图 8  马里亚纳海槽南部火山岩中斜长石熔体包裹体均一温度频次

    Figure 8. 

    图 9  马里亚纳海槽中部火山岩中斜长石熔体包裹体均一温度频次

    Figure 9. 

    表 1  马里亚纳海槽火山岩样品取样信息

    Table 1.  Sampling information of the Mariana Trough volcanic rock samples

    样品编号 纬度 经度 水深/m
    HOBAB5-T3-2 12°54′42.400″N 143°38′58.136″E 2 974
    HOBAB5-T2-1 18°12′37.372″N 144°42′22.521″E 3 659
    HOBAB5-T2-2 18°02′47.637″N 144°45′11.925″E 3 854
    HOBAB5-T2-3 18°00′56.720″N 144°45′00.101″E 4 038
    HOBAB5-T1-1 21°19′29.319″N 144°11′44.657″E 418
    HOBAB5-T1-3 21°29′15.150″N 144°02′29.908″E 1 604
    下载: 导出CSV

    表 2  熔融包裹体均一温度实验升温速率设置

    Table 2.  The experimental setup of heating rate for homogenization temperature in melt inclusions

    速率/(℃/min) 温度上限/℃ 恒温时间/min
    30 600 30
    10 650 10
    10 700 10
    10 750 10
    10 800 10
    10 850 10
    10 900 10
    10 950 10
    10 1000 10
    5 1050 10
    5 1100 10
    5 1150 10
    5 1200 10
    下载: 导出CSV

    表 3  马里亚纳海槽火山岩全岩主量元素数据

    Table 3.  Whole-rock principal element data of volcanic rocks from Mariana Trough wt%

    样品编号Al2O3CaOFe2O3K2OMgOMnONa2OP2O5TiO2SiO2LOI总值
    H5-T3-215.076.4610.390.582.720.204.220.241.6456.781.3599.65
    H5-T2-116.4810.179.150.575.760.163.020.181.0552.150.7399.42
    H5-T2-216.9510.858.180.377.110.152.940.161.1151.290.2499.35
    H5-T2-318.1910.797.940.446.230.143.050.171.1351.110.2299.41
    H5-T1-115.024.506.572.201.680.154.020.280.7363.400.9399.49
    H5-T1-314.5911.629.280.737.610.161.850.160.6552.400.5599.60
    下载: 导出CSV

    表 4  马里亚纳海槽火山岩斜长石斑晶中熔体包裹体的均一温度数据

    Table 4.  Homogeneous temperature data of melt inclusions in plagioclase phenocrysts of volcanic rocks from Mariana Trough

    样品号 H5-T2-1
    编号 1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1
    均一温度 1115 880 1135 900 935 1125 1085 1015 1085 1055 940
    编号 5.1 5.2 6.1 6.2 6.3 6.4 6.5 6.6 7.1 7.2 7.3
    均一温度 945 1135 920 1145 885 1110 990 1135 905 860 935
    编号 8.1 9.1 9.2 9.3 10.1 10.2 10.3 10.4 11.1 11.2 12.1
    均一温度 895 1095 925 1155 1075 1110 1090 1135 1005 960 1185
    样品号 H5-T2-2
    编号 1.1 1.2 2.1 2.2 2.3 3.1 3.2 4.1 4.2 4.3 4.4
    均一温度 1155 1100 1085 1145 1120 1035 1005 1130 1145 1145 1110
    编号 5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 7.1 7.2 8.1
    均一温度 1155 1095 1130 1090 1070 1055 1165 1130 1010 1045 1100
    编号 9.1 9.2 10.1
    均一温度 1090 1155 1090
    样品号 H5-T2-3
    编号 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 5.1
    均一温度 1050 1095 1080 1050 1065 1085 1125 1120 1130 1145 1120
    编号 5.2 5.3 6.1 7.1 7.2 7.3 7.4 8.1 8.2 9.1 9.2
    均一温度 1100 1125 1075 1050 1075 1070 1025 1085 1095 1115 1100
    编号 10.1 10.2 11.1 11.2 11.3
    均一温度 1135 1165 1145 1115 1130
    样品号 H5-T1-1
    编号 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 5.1
    均一温度 955 995 1030 1060 1055 1085 1125 1120 1130 1045 1020
    编号 5.2 5.3 6.1 7.1 7.2 7.3 7.4 8.1 8.2
    均一温度 1100 1125 1075 980 1040 1110 1025 1035 1095
    样品号 H5-T1-3
    编号 1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 5.1
    均一温度 955 975 950 995 1015 935 970 1105 1030 1090 965
    编号 5.2 5.3 6.1 7.1 7.2 7.3 7.4
    均一温度 990 1005 1085 955 935 910 1095
    样品号 H5-T3-2
    编号 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 4.1 4.2
    均一温度 1055 1135 1080 1090 1060 1135 1105 1030 1085 1080
    下载: 导出CSV

    表 5  电子探针分析斜长石的平均成分

    Table 5.  The average composition of plagioclase analyzed by electron microprobe

    样品号 测点个数 Na2O K2O CaO SiO2 FeO MgO Al2O3 TiO2 Cr2O3 MnO 总值 An
    平均值 范围
    H5-T3-2 30 AVE 4.78 0.05 11.84 53.58 0.71 0.10 28.33 0.07 0.01 0.01 99.47 57.6 55.0~62.0
    STD 0.25 0.02 0.39 0.51 0.05 0.01 0.40 0.02 0.02 0.01 0.27 0.02
    H5-T2-1 22 AVE 3.95 0.12 13.19 52.41 0.99 0.37 28.74 0.08 0.03 0.01 99.88 64.4 54.6~72.9
    STD 0.58 0.09 1.19 1.66 0.38 0.33 1.69 0.07 0.08 0.01 0.43 0.05
    H5-T2-2 29 AVE 3.28 0.07 14.77 50.66 0.54 0.21 30.85 0.05 0.01 0.01 100.45 71.0 63.6~74.2
    STD 0.24 0.02 0.48 0.58 0.13 0.07 0.60 0.02 0.02 0.01 0.44 0.02
    H5-T2-3 29 AVE 3.45 0.06 14.25 50.88 0.73 0.18 30.33 0.07 0.02 0.01 99.97 69.3 61.7~73.5
    STD 0.36 0.02 0.65 0.92 0.12 0.05 0.74 0.03 0.02 0.01 0.69 0.03
    H5-T1-1 31 AVE 4.85 0.22 11.47 54.37 0.62 0.07 28.05 0.03 0.01 0.01 99.70 55.9 51.0~66.4
    STD 0.64 0.09 1.50 6.73 0.10 0.02 3.51 0.03 0.01 0.01 12.42 0.03
    H5-T1-3 29 AVE 1.86 0.07 16.97 47.29 0.80 0.13 32.58 0.03 0.03 0.01 99.76 83.1 72.3~86.3
    STD 0.42 0.02 0.80 1.13 0.06 0.03 0.85 0.02 0.07 0.01 0.55 0.04
    注:AVE 为平均值,单位wt%;STD为标准差。
    下载: 导出CSV

    表 6  典型环带斜长石斑晶成分

    Table 6.  The composition of typical banded plagioclase phenocryst wt%

    样品测点Na2OK2OCaOSiO2FeOMgOAl2O3TiO2Cr2O3MnO总值An
    H5-T2-113.030.0614.9649.970.750.1730.980.040.010.0099.9672.91
    23.350.0714.4050.450.820.2330.260.030.000.0299.6270.12
    33.940.1113.5751.970.770.1929.440.030.040.00100.0765.16
    43.390.0914.4750.410.620.2230.360.040.020.0299.6269.89
    53.970.1013.0152.351.270.5628.140.080.040.0099.5164.06
    63.470.0914.1650.780.680.1830.120.030.010.0099.5368.90
    73.940.1113.5751.970.770.1929.440.030.040.00100.0765.16
    85.020.1411.1355.211.190.3926.730.060.390.00100.2554.62
    H5-T2-212.920.0615.4649.940.500.1931.550.060.010.00100.6974.25
    23.090.0415.1949.900.490.2031.460.060.000.00100.4372.93
    33.260.0514.9850.700.520.2431.120.080.060.01101.0171.54
    43.220.0514.8150.810.520.2130.880.070.050.00100.6271.53
    53.370.0714.7050.780.550.1930.930.060.000.01100.6470.39
    64.080.1013.1352.991.100.5228.310.070.000.00100.3063.64
    H5-T1-115.080.2111.1854.630.660.0827.690.080.040.0299.6654.20
    24.810.2111.6354.030.700.0828.090.040.010.0099.6056.51
    35.100.3010.8655.420.680.0827.310.040.030.0099.8253.12
    44.650.2011.9053.730.590.0828.330.010.020.0199.5357.87
    54.640.2311.8254.340.600.0728.140.020.000.0199.8857.68
    65.220.2310.9554.910.630.0927.550.040.030.0199.6452.96
    74.940.2411.4554.210.660.0727.910.070.000.0199.5755.38
    下载: 导出CSV

    表 7  根据 KUDO和 WEILL标定公式[34]计算的斜长石结晶温度

    Table 7.  The crystallization temperature of plagioclase determined by KUDO and WEILL methods[35]

    样品号 测点个数 温度/℃
    平均值 范围
    H5-T3-2 30 1 136.42 1 113~1 180
    H5-T2-1 22 1 149.01 1 121~1 182
    H5-T2-2 29 1 162.19 1 144~1 172
    H5-T2-3 29 1 168.59 1 154~1 179
    H5-T1-1 31 1 115.62 1 058~1 189
    H5-T1-3 29 998.80 981~1 038
    下载: 导出CSV

    表 8  马里亚纳海槽火山岩中斜长石结晶温度对比

    Table 8.  Comparison in crystallization temperatures of plagioclase in volcanic rocks from Mariana Trough

    地区 岩性 取样位置 斜长石结晶温度/℃ 数据来源
    马里亚纳海槽安山岩玄武岩18°N附近1 005~1 165包裹体均一温度
    玄武质安山岩18°N附近
    21°N附近
    850~950,1 050~1 150
    935~1 105
    安山岩12°50′N附近1 030~1 135
    英安岩21°N附近910~1 130
    玄武岩18°N附近11441179矿物-熔体温度计公式
    玄武质安山岩18°N附近
    21°N附近
    1 121~1 182
    981~1 038
    安山岩12°50′N附近1 113~1 180
    英安岩21°N附近1 058~1 189
    玄武岩18°N附近1 200±25文献[35]
    玄武岩18°N附近975~1 212文献[7]
    下载: 导出CSV
  • [1]

    ROEDDER E. Origin and significance of magmatic inclusions[J]. Bulletin de Minéralogie,1979,102(5):487-510.

    [2]

    SORBY H C. On the microscopical,structure of crystals,indicating theorigin of minerals and rocks[J]. Quarterly Journal of the Geological Society,1858,14(1/2):453-500.

    [3]

    KENT A J R. Melt inclusions in basaltic and related volcanic rocks[J]. Reviews in Mineralogy and Geochemistry,2008,69(1):273-331. doi: 10.2138/rmg.2008.69.8

    [4]

    李霓,孙嘉祥. 火山岩中熔体包裹体研究进展[J]. 矿物岩石地球化学通报,2018,37(3):414-423,560.

    LI N,SUN J X. Research progress on melt inclusions in volcanic rocks[J]. Mineral and Rock Geochemistry Bulletin,2018,37(3):414-423,560.

    [5]

    陈小明,谭清泉,赵广涛. 海底玄武岩中斜长石研究及其岩石学意义[J]. 岩石学报,2002,18(4):482-488.

    CHEN X M,TAN Q Q,ZHAO G T. Study on plagioclase in submarine basalt and its petrological significance[J]. Chinese Journal of Petrologica Sinica,2002,18(4):482-488.

    [6]

    鄢全树,石学法,刘季花,等. 南海新生代碱性玄武岩中斜长石矿物的化学成分及意义[J]. 矿物学报,2008,28(2):135-142.

    YAN Q S,SHI X F,LIU J H,et al. Chemical composition and significance of plagioclase minerals in the Cenozoic alkaline basalt of the South China Sea[J]. Mineralogical Journal,2008,28(2):135-142.

    [7]

    张平阳,鄢全树. 马里亚纳海槽玄武岩中斜长石矿物化学及意义[J]. 海洋科学进展,2017,35(2):234-248.

    ZHANG P Y,YAN Q S. Chemistry and significance of plagioclase minerals in the Mariana Trench basalt[J]. Advances in Marine Science,2017,35(2):234-248.

    [8]

    曾志刚,张松梅,常丽华. 东海陆架边缘北部玄武岩的矿物及化学特征[J]. 海洋地质与第四纪地质,2002,22(3):47-52.

    ZENG Z G,ZHANG S M,CHANG L H. Mineral and chemical characteristics of basalt in the northern margin of the East China Sea continental shelf[J]. Marine Geology and Quaternary Geology,2002,22(3):47-52.

    [9]

    石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展,2013,28(7):737-750.

    SHI X F,YAN Q S. Magmatic activity in typical marginal basins of the western Pacific[J]. Advances in Earth Sciences,2013,28(7):737-750.

    [10]

    ZAJACZ Z,HALTER W. LA-ICPMS analyses of silicate melt inclusions inco-precipitated minerals:quantification,data analysis and mineral/melt partitioning[J]. Geochimica et Cosmochimica Acta,2007,71(4):1021-1040. doi: 10.1016/j.gca.2006.11.001

    [11]

    PETTKE T,HALTER W E,WEBSTER J D,et al. Accurate quantification of melt inclusion chemistry by LA-ICPMS:a comparison with EMP and SIMS and advantages and possible limitations of these methods[J]. Lithos,2004,78(4):333-361. doi: 10.1016/j.lithos.2004.06.011

    [12]

    HALTER W E,PETTKE T,HEINRICH C A,et al. Major to trace elementanalysis of melt inclusions by laser-ablation ICP-MS:methods of quantification[J]. Chemical Geology,2002,183(1/4):63-86.

    [13]

    SOBOLEV A V,HOFMANN A W,NIKOGOSIAN I K. Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loalavas[J]. Nature,2000,404(6781):986-990. doi: 10.1038/35010098

    [14]

    SAAL A E,HART S R,SHIMIZU N,et al. Pb isotopic variability in meltinclusions from oceanic island basalts,Polynesia[J]. Science,1998,282(5393):1481-1484. doi: 10.1126/science.282.5393.1481

    [15]

    SOBOLEV A V,CHAUSSIDON M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges:implications for H2O storage and recycling in the mantle[J]. Earth and Planetary Science Letters,1996,137(1/4):45-55.

    [16]

    丁一,刘吉强,宗统,等. 熔体包裹体挥发分应用的研究进展[J]. 岩石矿物学杂志,2019,38(6):897-913.

    DING Y,LIU J Q,ZONG T,et al. Research progress on the application of volatiles from melt inclusions[J]. Acta Petrologica et Mineralogica,2019,38(6):897-913.

    [17]

    任钟元,张乐,吴亚东,等. 熔体包裹体在镁铁质火山岩成因研究中的应用[J]. 矿物岩石地球化学通报,2018,37(3):395-413.

    REN Z Y,ZHANG L,WU Y D,et al. Application of melt inclusions in the genetic research of mafic volcanic rocks[J]. Bulletin of Mineralogy,Petrology and Geochemistry. 2018,37(3):395-413.

    [18]

    李晓辉,杨慧心,曾志刚. 西太平洋弧后盆地火山岩中熔体包裹体研究进展[J]. 海洋地质与第四纪地质,2021,41(1):166-179.

    LI X H,YANG H X,ZENG Z G. Research progress on melt inclusions in volcanic rocks in the western Pacific back arc basin[J]. Marine Geology & Quaternary Geology,2021,41(1):166-179.

    [19]

    LAI Z Q,ZHAO G T,HAN Z Z. The magma plumbing system in the Mariana Trough back arc basin at 18°N[J]. Journal of Marine Systems,2018,180:132-139.

    [20]

    MARTÍNEZ F,FRYER P,BAKER N A,et al. Evolution of backarc rifting:Mariana Trough,20°-24°N[J]. Journal of Geophysical Research:Solid Earth,1995,100(B3):3807-3827. doi: 10.1029/94JB02466

    [21]

    MARTINEZ F,FRYER P,BECKER N. Geophysical characteristics of the southern Mariana Trough,11°50′N–13°40′N[J]. Journal of Geophys-ical Research:Solid Earth,2000,105(B7):16591-16607.

    [22]

    STERN R J,FOUCH M J,KLEMPERER S L. An overview of the Izu-Bonin-Mariana subduction factory[J]. Inside the Subduction Factory,2003,138:175-222.

    [23]

    KARIG D E,ANDERSON R N,BIBEE L D. Characteristics of back arc spreading in the Mariana Trough[J]. Journal of Geophysical Re-search:Solid Earth,1978,83(B3):1213-1226. doi: 10.1029/JB083iB03p01213

    [24]

    PEARCE,J A,Stern R J. Origin of back-arc basin magmas:trace element and isotope perspectives[J]. Back-arc Spreading Systems: Washington DCA merican Geophysical Union Geophysical Monograph,2006,166:63-86. doi: 10.1029/166GM06

    [25]

    TIAN L,ZHAO G,ZHAO G,et al. Geochemistry of basaltic lavas from the Mariana Trough:evidence for influence of subduction component on the generation of backarc basin magmas[J]. International Geology Review,2005,47(4):387-397. doi: 10.2747/0020-6814.47.4.387

    [26]

    吴平霄,吴金平,李才伟,等. 斜长石韵律环带的结晶速率方程及其动力学机制[J]. 岩石学报,1998,14(3):388-394.

    WU P X,WU J P,LI C W,et al. Crystalline velocity equation and kinetics mechanism of plagioclase oscillatory zoning[J]. Acta Petrologica Sinica,1998,14(3):388-394.

    [27]

    MATHEZ E A. Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks[J]. Contributions to Mineralogy and Petrology,1973,41(1):61-72. doi: 10.1007/BF00377654

    [28]

    LEBAS M J,LEMAITRE R W,STRECKEISEN A,et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology,1986,27(3):745-750. doi: 10.1093/petrology/27.3.745

    [29]

    Peccerillo A , Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy Petrology,1976,58(1):63-81.

    [30]

    SUGAWARA T. Ferric iron partitioning between plagioclase and silicate liquid:thermodynamics and petrological applications[J]. Contributions to Mineralogy and Petrology,2001,141(6):659-686. doi: 10.1007/s004100100267

    [31]

    GHIORSO M S,SACK R O. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology,1995,119(2/3):197-212.

    [32]

    GHIORSO M S,HIRSCHMANN M,REINERS P W,et al. The pMELTS:a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa[J]. Geochemistry,Geophysics,Geosystems,2002,3(5):1-35.

    [33]

    张国良. 东太平洋海隆 13°N 附近玄武岩特征及其对岩浆作用的指示[D]. 青岛:中国科学院海洋研究所,2010.

    ZHANG G L. Characteristics of basalt near 13°N on the East Pacific Rise and its indication of magmatic activity[D]. Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2010.

    [34]

    KUDO A M,WEILL D F. An igneous plagioclase thermometer[J]. Contributions to Mineralogy and Petrology,1970,25(1):52-65. doi: 10.1007/BF00383062

    [35]

    孙海青,高爱国,倪培,等. 马里亚纳海槽玄武岩中熔融包裹体的初步研究[J]. 海洋科学进展,2004,22(3):292-298.

    SUN H Q,GAO A G,NI P,et al. Preliminary study on melt inclusions in the Mariana Trench basalt[J]. Advances in Marine Science,2004,22(3):292-298.

    [36]

    LI X H,ZENG Z G,YANG H X,et al. Integrated major and trace element study of clinopyroxene in basic,intermediate and acidic volcanic rocks from the middle Okinawa Trough:insights into petrogenesis and the influence of subduction component[J]. Lithos,2020,352/353:105320. doi: 10.1016/j.lithos.2019.105320

    [37]

    LI X H,ZENG Z G,YANG H X,et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks:implications for petrogenesis and variable subducted sediment component injection[J]. Geological Journal,2019,54(3):1160-1189. doi: 10.1002/gj.3217

    [38]

    李雪丽,曾志刚,李晓辉,等. 冲绳海槽西南部火山岩熔体包裹体的均一温度及对岩浆混合的指示意义[J]. 海洋科学,2021,45(11):82-95.

    LI X L, ZENG Z G, LI X H, et al. Homogeneous temperature study of melt inclusions in volcanic rocks from the southwestern Okinawa Trough: insights into magma mixing processes[J]. Marine Sciences,2021,45(11):82-95.

    [39]

    ZHANG G L,ZENG Z G,YIN X B,et al. Periodic mixing of magma near 13°N East Pacific Rise:simulation and plagioclase evidence[J]. Chinese Science: Earth Sciences,2009(1):35-50.

  • 加载中

(9)

(8)

计量
  • 文章访问数:  33
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-02-25
刊出日期:  2025-02-28

目录