基于机载LiDAR和剖面数据的海滩地形动态监测

刘文良, 褚宏宪, 法鸿洁, 王洪松, 鲍宽乐, 李晓阳, 刘京强. 基于机载LiDAR和剖面数据的海滩地形动态监测[J]. 海洋地质前沿, 2025, 41(1): 81-92. doi: 10.16028/j.1009-2722.2024.121
引用本文: 刘文良, 褚宏宪, 法鸿洁, 王洪松, 鲍宽乐, 李晓阳, 刘京强. 基于机载LiDAR和剖面数据的海滩地形动态监测[J]. 海洋地质前沿, 2025, 41(1): 81-92. doi: 10.16028/j.1009-2722.2024.121
LIU Wenliang, CHU Hongxian, FA Hongjie, WANG Hongsong, BAO Kuanle, LI Xiaoyang, LIU Jingqiang. Dynamic monitoring of beach topography based on airborne LiDAR and profile data[J]. Marine Geology Frontiers, 2025, 41(1): 81-92. doi: 10.16028/j.1009-2722.2024.121
Citation: LIU Wenliang, CHU Hongxian, FA Hongjie, WANG Hongsong, BAO Kuanle, LI Xiaoyang, LIU Jingqiang. Dynamic monitoring of beach topography based on airborne LiDAR and profile data[J]. Marine Geology Frontiers, 2025, 41(1): 81-92. doi: 10.16028/j.1009-2722.2024.121

基于机载LiDAR和剖面数据的海滩地形动态监测

  • 基金项目: 中国地质调查局项目“胶东北部海岸带与岛礁综合地质调查”,“1:25万威海幅海洋区域地质调查”(DD20220875,DD20230412)
详细信息
    作者简介: 刘文良(1990—),男,硕士,工程师,主要从事环境地质和遥感技术方面的研究工作. E-mail:813357425@qq.com
    通讯作者: 褚宏宪(1973—),男,硕士,正高级工程师,主要从事海洋地质调查方面的研究工作. E-mail:chx-8@163.com
  • 中图分类号: P737.1

Dynamic monitoring of beach topography based on airborne LiDAR and profile data

More Information
  • 传统的海滩监测剖面方法无法获得区域尺度的监测数据,制约了海滩区域地形变化规律的研究。根据2022年4月—2023年9月周期性RTK实测剖面数据和多期机载LiDAR数据,分析了烟台市金山湾局部地区的海滩地形变化特征。结果显示,机载LiDAR技术能够快速获得海滩的三维点云信息,具有厘米级的精度,且基于多测次的数据能够估算泥沙的侵蚀/淤积体量。2年的剖面监测数据表明,研究区海滩在年际变化中整体呈现淤积趋势,年平均淤积厚度约为0.19 m/a;海滩的季节变化特征表明,弱动力条件下的泥沙淤积量小于强动力条件;平均高潮线以上地形相对稳定,潮间带区域受风浪、潮流等因素影响地形变化频繁。4测次的机载LiDAR数据资料显示,研究区海滩在秋季整体以淤积为主,平均淤积厚度约为0.09 m,潮间带区域侵蚀和淤积相间分布状况明显。汉河入海口东侧海滩的侵蚀深度和淤积厚度相对西侧海滩偏大,河口沙坝东西向有一定增长,导致河口变窄。风浪、潮流、河流等自然因素是塑造海滩形态和控制海滩演化的主要动力因素。极端天气可影响海滩的季节性演化。人类活动在一定程度上影响了海滩地形的自然演化。

  • 加载中
  • 图 1  研究区及海滩剖面位置示意图

    Figure 1. 

    图 2  剖面点云与RTK实测高程叠加图

    Figure 2. 

    图 3  剖面RTK实测高程和DEM对应散点分布图

    Figure 3. 

    图 4  海滩剖面监测对比

    Figure 4. 

    图 5  河口西侧(P5)、东侧(P6)剖面地形变化和无人机正射影像图

    Figure 5. 

    图 6  研究区侵蚀和淤积变化

    Figure 6. 

    图 7  泥沙侵蚀/淤积量计算示意图

    Figure 7. 

    图 8  月平均风向、波浪向和沿岸流

    Figure 8. 

    表 1  研究区海滩剖面信息统计

    Table 1.  Information of beach profile of the study area

    剖面编号起点坐标剖面方向测量时间
    P137°27′12.2″N、121°44′25.9″E2022年4、9月,2023年4、9月
    P237°27′11.7″N、121°44′43.9″E2022年4、9月,2023年4、9月
    P337°27′16.5″N、121°45′35.9″E2022年4、9月,2023年4、8、9月
    P437°27′23.7″N、121°45′49.3″E2022年4、9月,2023年4、8、9月
    下载: 导出CSV

    表 2  机载LiDAR传感器参数和数据采集时间

    Table 2.  Airborne LiDAR (light detection and ranging) sensor parameters and data acquisition time

    参数禅思L1飞马LiDAR22
    搭载平台大疆M300飞马D20
    飞行高度80 m200 m
    波长905 nm1 550 nm
    回波数3次5次
    分辨率>100点/m2>50点/m2
    扫描角度70.4°360°可调
    采集时间2023年8、10、11月2023年9月
    下载: 导出CSV
  • [1]

    NICHOLAS J M,ROBERT S C,STUART R P,et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea[J]. Frontiers in Ecology and the Environment,2014,12(5):267-272. doi: 10.1890/130260

    [2]

    张长宽,龚政,陈永平,等. 潮滩演变研究进展及前沿问题[C]//第十八届中国海洋(岸)工程学术讨论会论文集. 北京:海洋出版社,2017:759-766.

    ZHANG C K,GONG Z,CHEN Y P,et al. Research progress and frontier issues on tidal flat evolution[C]//Proceedings of the 18th China Ocean (Coastal) Engineering Academic Symposium. Beijing:Ocean Press,2017:759-76.

    [3]

    岳保静,高茂生,邵家旺,等. 河北省京唐港附近沙坝-潟湖海岸地貌演化特征[J]. 海洋地质前沿,2018,34(9):10-16.

    YUE B J,GAO M S,SHAO J W,et al. Geomorphological evolution of the barrier-lagoon system near the Jingtang Port,Hebei Province[J]. Marine Geology Frontiers,2018,34(9):10-16.

    [4]

    解航,杨怡红,朱龙海,等. 山东半岛东南部典型砂质岸滩季节性演化及控制因素探讨:以海阳万米海滩为例[J]. 海洋地质与第四纪地质,2022,42(1):57-67.

    XIE H,YANG Y H,ZHU L H,et al. Seasonal evolution of the typical sandy coast of southeastern Shandong Peninsula and controlling factors:take the 10 000-meter beach in Haiyang as an example[J]. Marine Geology & Quaternary Geology,2022,42(1):57-67.

    [5]

    张鑫,李萍,杨奇铮,等. 广西北海涠洲岛典型岸滩剖面短期冲淤变化特征[J]. 海洋科学,2016,40(6):77-83.

    ZHANG X,LI P,YANG Q Z,et al. Short-term shore change characteristics of erosion and deposition on Weizhou Island in Beihai,Guangxi Province[J]. Marine Sciences,2016,40(6):77-83.

    [6]

    LI H,GONG Z ,DAI W Q,et al. Feasibility of elevation mapping in muddy tidal flats by remotely sensed moisture (RSM) method [J]. Journal of Coastal Research,2018,85 (Sp1):291-295.

    [7]

    LI W Y,GONG P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery[J]. Remote Sensing of Environment,2016,179:196-209. doi: 10.1016/j.rse.2016.03.031

    [8]

    KANG Y Y,LEI J,WANG M J,et al. Topographic evolution of tidal flats based on remote sensing:an example in Jiangsu coast,Southern Yellow Sea[J]. Frontiers in Marine Science,2023,10:1163302. doi: 10.3389/fmars.2023.1163302

    [9]

    王子赫,康彦彦,王敏京. ICESat-2与多源光学影像的潮滩地形反演方法[J]. 测绘通报,2023(5):51-55.

    WANG Z H,KANG Y Y,WANG M J. ICESat-2 and multivariate optical image for tidal flat topography inversion methods[J]. Surveying and Mapping Bulletin,2023,5:51-55,61.

    [10]

    FAN Y S,CHEN S L,ZHAO B,et al. Monitoring tidal flat dynamics affected by human activities along an eroded coast in the Yellow River Delta,China.[J]. Environmental Monitoring and Assessment,2018,190(7):396-412. doi: 10.1007/s10661-018-6747-7

    [11]

    胡勇,何旭涛,徐辉,等. RTK无人机在潮间带地形测量中的应用[J]. 地理空间信息,2021,19(4):41-43.

    HU Y,HE X T,XU H,et al. Application of RTK UAV in the topography survey of intertidal zone[J]. Geospatial Information,2021,19(4):41-43.

    [12]

    庄佳铨,罗科,彭雲,等. 基于无人机SfM摄影测量的潮间带牡蛎礁地貌调查[J]. 海洋地质与第四纪地质,2023,43(6):45-54.

    ZHUANG J Q,LUO K,PENG Y,et al. Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry[J]. Marine Geology & Quaternary Geology,2023,43(6):45-54.

    [13]

    CHEN B Q,YANG Y M,WEN H T,et al. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery[J]. Ocean and Coastal Management,2018,160:103-116. doi: 10.1016/j.ocecoaman.2018.04.007

    [14]

    LU C H,CHYI S J. Using UAV-SfM to monitor the dynamic evolution of a beach on Penghu Islands[J]. Terrestrial,Atmospheric and Oceanic Sciences,2020,31(3):283-293. doi: 10.3319/TAO.2019.09.25.01

    [15]

    陈奇,张阳,唐雯雯,等. 低空无人机平台应用于海滩地形监测的初步研究[J]. 海洋地质与第四纪地质,2023,43(6):55-68.

    CHEN Q,ZHANG Y,TANG W W,et al. Application of low-altitude airspace UAVs in beach terrain monitoring[J]. Marine Geology & Quaternary Geology,2023,43(6):55-68.

    [16]

    郭一栋,林杭杰,于谦,等. 基于无人机SfM摄影测量的海岸盐沼前缘形态变化研究[J]. 海洋学报,2022,44(12):148-160.

    GUO Y D,LIN H J,YU Q,et al. Morphology of coastal salt marsh margins:a study using UAV-based Structure-from-Motion photo-grammetry[J]. Haiyang Xuebao,2022,44(12):148-160.

    [17]

    许宝华,刘世振. 机载LiDAR测量技术在潮间带测量中的应用[J]. 人民长江,2019,50(11):95-98.

    XU B H,LIU S Z. Application of airborne LiDAR measurement technology in intertidal zone measurement[J]. Yangtze River,2019,50(11):95-98.

    [18]

    别君. 基于机载LiDAR数据的滩涂地形形变监测[C]//“一带一路”战略与海洋科技创新—中国海洋学会2015年学术论文集:海洋出版社,2015:31-35.

    Bei J. Beach topography deformation monitoring based on airborne LiDAR data [C]// "Belt and Road" Strategy and Marine Science and Technology Innovation-2015 Academic Proceedings of the Chinese Society of Oceanography. Beijing:Ocean Press,2015:31-35.

    [19]

    文学东,李俊峰,林昀. 机载LiDAR在高精度滩涂DEM制作中的关键技术分析[J]. 测绘通报,2019(6):92-95.

    WEN X D,LI J F,LIN Y. Key technologies analysis of airborne LiDAR in high accuracy tidal flats DEM production[J]. Surveying and Mapping Bulletin,2019(6):92-95.

    [20]

    ZHANG H F,WANG L,ZHAO Y F,et al. Application of Airborne LiDAR measurements to the topographic survey of the tidal flats of the northern Jiangsu radial sand ridges in the Southern Yellow Sea[J]. Frontiers in Marine Science,2022,9:871156. doi: 10.3389/fmars.2022.871156

    [21]

    杨帆,任闯,曲丹,等. 机载LiDAR技术在矿区地表沉陷灾害监测中的应用[J]. 测绘工程,2023,32(4):59-68.

    YANG F,REN C,QU D,et al. Airborne LiDAR technology sinks on the surface of the mine application in disaster monitoring[J]. Engineering of Surveying and Mapping,2023,32(4):59-68.

    [22]

    郑俊良,姚顽强,蔺小虎,等. 无人机LiDAR在采空区沉陷监测中的应用[J]. 西安科技大学学报,2023,43(4):825-835.

    ZHENG J L,YAO W Q,LIN X H,et al. Application of UAV LiDAR in monitoring subsidence of goaf[J]. Journal of Xi'an University of Science and Technology,2023,43(4):825-835.

    [23]

    岳保静,廖晶,高茂生,等. 山东半岛砂质海滩动力地貌演化特征[J]. 海洋科学,2017,41(4):118-127.

    YUE B J,LIAO J,GAO M S,et al. Evolutionary features of morphodynamics of sandy beaches on the Shandong Peninsula[J]. Marine Sciences,2017,41(4):118-127.

    [24]

    周良勇,薛春汀,刘健,等. 山东半岛东、北部海滩动力地貌特征及影响因素[J]. 海洋科学进展,2013,31(1):83-94.

    ZHOU L Y,XUE C T,LIU J,et al. Beach morphodynamics and impact factors on the beaches in the northern and eastern of Shandong Peninsula[J]. Advances in Marine Science,2013,31(1):83-94.

    [25]

    张丽丽,邢浩,张旭日,等. 山东半岛海滩动力地貌特征分类[J]. 海洋科学,2023,47(2):10-19.

    ZHANG L L,XING H,ZHANG X R,et al. Classification of beach dynamic geomorphic features in the Shandong Peninsula[J]. Marine Science,2023,47(2):10-19.

    [26]

    中国海湾志编繁委员会. 中国海湾志第3分册(山东半岛北部和东部海湾)[M]. 北京:海洋出版社,1991.

    Compilation Committee of Record of Bays in China (CCRBC). Records of Bays in China (Volume 3:Bays in the North and East Shandong Peninsula)[M].Beijing:Beijing China Ocean Press,1991.

    [27]

    蔡锋,苏贤泽,曹惠美,等. 华南砂质海滩的动力地貌分析[J]. 海洋学报,2005,27(2):106-114.

    CAI F,SU X Z,CAO H M,et al. Analysis on morphodynamics of sandy beaches in South China[J]. Acta Oceanologica Sinica,2005,27(2):106-114.

    [28]

    韦钦胜,于志刚,冉祥滨,等. 黄海西部沿岸流系特征分析及其对物质输运的影响[J]. 地球科学进展,2011,26(2):145-156.

    WE Q S,YU Z G,RAN X B,et al. Characteristics of the western coastal current of the Yellow Sea and its impacts on material transportation[J]. Advances in Earth Science,2011,26(2):145-156.

    [29]

    马晓红,韩宗珠,艾丽娜,等. 中国渤黄海的沉积物源及输运路径研究[J]. 中国海洋大学学报(自然科学版),2018,48(6):96-101.

    MA X H,HAN Z Z,AI L N,et al. Research on provenance and transport pattern in the Bohai Sea and Yellow Sea[J]. Periodical of Ocean University of China,2018,48(6):96-101.

    [30]

    彭旸,龚承林,李顺利. 河流-波浪-潮汐混合作用过程研究进展[J]. 沉积学报,2022,40(4):957-978.

    PENG Y,GONG C L,LI S L. Recent Advances in river-wave-tide mixed processes[J]. Acta Sedimentologica Sinica,2022,40(4):957-978.

  • 加载中

(8)

(2)

计量
  • 文章访问数:  87
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2023-12-13
刊出日期:  2025-01-28

目录