红河流域不同粒级沉积物揭示的风化特征及其控制因素

王是君, 李超, 段知非, 郭玉龙, 段晓勇, 印萍, 杨守业. 红河流域不同粒级沉积物揭示的风化特征及其控制因素[J]. 海洋地质前沿, 2025, 41(4): 4-15. doi: 10.16028/j.1009-2722.2024.201
引用本文: 王是君, 李超, 段知非, 郭玉龙, 段晓勇, 印萍, 杨守业. 红河流域不同粒级沉积物揭示的风化特征及其控制因素[J]. 海洋地质前沿, 2025, 41(4): 4-15. doi: 10.16028/j.1009-2722.2024.201
WANG Shijun, LI Chao, DUAN Zhifei, GUO Yulong, DUAN Xiaoyong, YIN Ping, YANG Shouye. Weathering characteristics in the Red River catchment and controlling factors revealed by sediments with different grain sizes[J]. Marine Geology Frontiers, 2025, 41(4): 4-15. doi: 10.16028/j.1009-2722.2024.201
Citation: WANG Shijun, LI Chao, DUAN Zhifei, GUO Yulong, DUAN Xiaoyong, YIN Ping, YANG Shouye. Weathering characteristics in the Red River catchment and controlling factors revealed by sediments with different grain sizes[J]. Marine Geology Frontiers, 2025, 41(4): 4-15. doi: 10.16028/j.1009-2722.2024.201

红河流域不同粒级沉积物揭示的风化特征及其控制因素

  • 基金项目: 国家重点研发计划项目(2022YFF0800504);国家自然科学基金(42273057,42076063);亚洲合作资金项目“长江三角洲与红河三角洲海洋地质环境与灾害合作研究”
详细信息
    作者简介: 王是君(2000—),男,在读硕士,主要从事沉积地球化学方面的研究工作. E-mail:2231656@tongji.edu.cn
    通讯作者: 李超(1983—),男,博士,副教授,主要从事沉积地球化学方面的研究工作. E-mail:cli@tongji.edu.cn
  • 中图分类号: P736.2

Weathering characteristics in the Red River catchment and controlling factors revealed by sediments with different grain sizes

More Information
  • 红河曾是青藏高原东缘大河的入海通道,也是现南海北部沉积物的主要供给源之一,是研究南海源-汇过程及构造-气候-风化关系的理想区域。通过对比红河及其支流不同粒级沉积物的主量元素及其CIA,分析CIA和气候、地形及岩性等环境参数的相关性,探究红河流域硅酸盐风化的主要控制因素。结果表明:粗粒级沉积物是石英和长石的混合物,其主量元素组成受粒度和石英稀释的影响显著,与所有环境参数均无相关性,CIA不能准确反映其化学风化特征;细粒级沉积物可以代表上游流域的平均组成,其CIA主要反映流域化学风化程度,通过对CIA和环境参数进行相关性分析可知,降雨和坡度是红河流域风化程度的主控因素。

  • 加载中
  • 图 1  红河流域地形图及采样点位置

    Figure 1. 

    图 2  红河沉积物主量元素组成与Al2O3/SiO2的关系

    Figure 2. 

    图 3  红河及其支流沉积物的CIA

    Figure 3. 

    图 4  不同粒级沉积物的CIA与环境参数的相关性

    Figure 4. 

    图 5  粒度、风化和石英富集对红河沉积物主量元素的影响

    Figure 5. 

    图 6  细粒级沉积物的CIA和环境参数的相关性

    Figure 6. 

    表 1  样品主量元素组成及CIA

    Table 1.  Major element composition and CIA of the samples

    粒径/μm样品编号SiO2/wt%Al2O3/wt%MgO/wt%CaO/wt%Na2O/wt%K2O/wt%Fe2O3/wt%CIA
    < 2RS0443.2426.851.550.190.193.2011.4386.7
    RS05-143.6724.291.880.210.343.1813.0284.7
    RS0643.4224.981.510.280.192.9412.4686.2
    RS0741.3927.731.390.240.192.8411.5687.9
    RS1138.9223.022.280.780.242.1216.8884.8
    RS1238.8422.932.260.730.252.1816.9284.8
    RS1340.0322.742.160.710.232.2916.9284.5
    RS1539.3023.632.250.660.282.4716.8584.5
    RS1639.6523.232.420.580.272.6617.3084.1
    RS1740.9124.172.030.490.242.5214.8585.7
    RS2044.3124.422.750.500.333.8812.0281.2
    RS2143.4424.602.290.300.293.1613.0684.7
    RS2348.7724.961.880.160.394.159.2082.1
    RS2445.3825.142.030.160.333.7411.4483.7
    RS2544.1324.991.990.300.273.3212.3884.5
    RS2642.0326.141.930.300.273.5012.7684.5
    RS3045.3424.562.040.290.373.5411.7983.1
    RS3242.5625.941.940.210.293.4312.4585.0
    < 63RS0458.3418.751.510.740.473.137.5777.3
    RS05-163.6615.951.680.480.902.796.7474.8
    RS0661.5516.111.551.040.552.857.5573.2
    RS0766.6115.101.290.520.472.895.8475.7
    RS1154.7515.692.641.811.082.2211.7967.7
    RS1257.4715.112.371.561.142.3710.5067.5
    RS1355.1515.232.541.630.962.3311.6968.3
    RS1557.3414.612.501.831.052.4010.2865.6
    RS1657.1314.692.371.551.072.5411.0466.7
    RS1765.0013.911.691.161.182.507.4767.3
    RS2063.5115.751.900.801.152.826.9171.1
    RS2161.1915.871.860.820.852.708.3473.2
    RS2367.5714.241.530.550.812.726.0872.9
    RS2468.8313.571.520.500.762.415.8574.0
    RS2562.7216.471.720.780.842.767.4274.0
    RS2662.3216.441.660.760.792.837.2474.1
    RS3062.4116.261.690.690.882.797.3473.9
    RS3261.5816.771.730.700.792.817.2974.9
    63~2 000R593772.0210.941.672.081.493.005.0557.3
    R593876.349.151.392.071.332.643.4755.8
    R593977.828.851.361.621.042.243.4760.2
    R594084.726.280.720.670.711.912.5158.7
    R594184.066.850.740.540.742.102.5860.5
    M594284.806.820.770.500.761.892.5261.9
    D594387.515.610.680.490.691.722.2259.0
    L594477.6310.290.840.980.953.622.8859.3
    L594582.397.960.720.760.732.732.7259.7
    L594679.968.860.800.790.812.783.1960.9
    L594779.519.100.720.660.882.683.0162.1
    VN0506070185.486.900.870.600.491.813.1865.9
    VN0506070280.548.031.482.611.022.153.6558.5
    VN0506071072.5910.751.833.391.322.455.9260.6
    VN0506080171.9312.011.913.371.202.665.9863.7
    VN0506080566.9412.762.072.790.923.449.8265.4
    VN0506080686.296.890.300.420.612.781.6559.0
    VN0506080779.8610.000.871.320.452.713.7169.3
    注: < 2 μm样品数据引自文献[12],< 63 μm样品数据引自文献[26],63~2 000 μm样品数据引自文献[28,35]。
    下载: 导出CSV

    表 2  各样品上游流域的环境参数

    Table 2.  Environmental parameters of the upstream catchment

    粒径/μm 样品编号 河流 温度/℃ 降雨/
    (mm/a)
    海拔/m 坡度/(°) 流域面积
    /km2
    沉积岩/% 基性—超基
    性岩/%
    中—酸性岩
    /%
    变质岩/%
    < 2 和< 63 RS04 泸江 19.2 1 590 892 3.4 3.2 75.0 3.3 1.9 19.9
    RS05 红河 18.7 1 342 1 251 4.8 8.9 77.5 6.5 5.0 10.9
    RS06 泸江 19.2 1 588 909 3.4 3.1 75.3 2.6 1.9 20.1
    RS07 斋江 19.8 1 715 781 3.8 0.6 46.0 13.9 2.4 37.7
    RS11、12、13 红河 17.5 1 158 1 533 5 3.7 68.3 3.4 6.1 22.2
    RS15、16、17 红河 17.7 1 202 1 464 5 4.0 68.2 5.7 5.6 20.4
    RS20、21 红河 18 1 227 1 388 4.8 4.3 67.6 7.7 5.2 19.6
    RS23、24 李仙江 19.4 1 451 1 124 4.9 4.5 87.0 5.4 4.9 2.8
    RS30、32 红河 19.6 1 454 976 3.9 14.5 79.6 4.8 3.9 11.7
    63~2 000 L5946、5947 泸江 19.2 1 590 892 3.4 3.2 75.0 3.3 1.9 19.9
    R5937、5938,
    VN05060702
    红河 18 1 227 1 388 4.8 4.3 67.6 7.7 5.2 19.6
    D5943, VN05060701 李仙江 19.4 1 451 1 124 4.9 4.5 87.0 5.4 4.9 2.8
    M5942 红河 19.6 1 454 976 3.9 14.5 79.6 4.8 3.9 11.7
    R5939 红河 18.9 1 407 1 157 4.5 12.0 76.8 5.7 4.2 13.3
    L5944 泸江 18.5 1 581 1 060 3.1 1.1 69.2 0.0 3.7 21.1
    L5945 泸江 18.9 1 558 955 3.4 2.5 70.2 0.2 1.8 14.4
    VN05060710 红河 17.5 1 158 1 533 5 3.7 68.3 3.4 6.1 22.2
    VN05060801 红河 17.2 1 100 1 597 5 3.4 70.7 0.9 4.9 23.5
    VN05060805 斋江 18.5 1 694 1 067 4.6 0.4 61.3 2.5 3.5 32.7
    VN05060806 斋江 19.8 1 715 781 3.8 0.6 46.0 13.9 2.4 37.7
    VN05060807 泸江 19.2 1 588 909 3.4 3.1 75.3 2.6 1.9 20.1
    下载: 导出CSV
  • [1]

    BERNER R A,LASAGA A C,GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years[J]. American Journal of Science,1983,283(7):641-683. doi: 10.2475/ajs.283.7.641

    [2]

    WALKER J C G,HAYS P B,KASTING J F. A negative feedback mechanism for the long-term stabilization of earths surface-temperature[J]. Journal of Geophysical Research-Oceans,1981,86(10):9776-9782.

    [3]

    MCLENNAN S M. Weathering and global denudation[J]. Journal of Geology,1993,101(2):295-303. doi: 10.1086/648222

    [4]

    NESBITT H W,YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299(5885):715-717. doi: 10.1038/299715a0

    [5]

    PARKER A F W. An index of weathering for silicate rocks[J]. Geological Magazine,1970,107:501-504. doi: 10.1017/S0016756800058581

    [6]

    HARNOIS L. The CIW index:a new chemical index of weathering[J]. Sedimentary Geology,1988,55(3):319-322.

    [7]

    GAILLARDET J,DUPRÉ B,ALLÈGRE C J. Geochemistry of large river suspended sediments:silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta,1999,63(23):4037-4051.

    [8]

    GARZANTI E,PADOAN M,SETTI M,et al. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds[J]. Geochemistry,Geophysics,Geosystems,2013,14(2):292-316.

    [9]

    CHETELAT B,LIU C Q,WANG Q,et al. Assessing the influence of lithology on weathering indices of Changjiang River sediments[J]. Chemical Geology,2013,359:108-115. doi: 10.1016/j.chemgeo.2013.09.018

    [10]

    SHAO J Q,YANG S Y,LI C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China:inferences from analysis of fluvial sediments[J]. Sedimentary Geology,2012,265/266:110-120. doi: 10.1016/j.sedgeo.2012.03.020

    [11]

    BORGES J B,HUH Y,MOON S,et al. Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East[J]. Chemical Geology,2008,254(1/2):52-72.

    [12]

    LIU Z F,ZHAO Y L,COLIN C,et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews,2016,153:238-273. doi: 10.1016/j.earscirev.2015.08.005

    [13]

    VITAL H,STATTEGGER K. Major and trace elements of stream sediments from the lowermost Amazon River[J]. Chemical Geology,2000,168(1):151-168.

    [14]

    TRIPATHI J K,GHAZANFARI P,RAJAMANI V,et al. Geochemistry of sediments of the Ganges alluvial plains:evidence of large-scale sediment recycling[J]. Quaternary International,2007,159(1):119-130. doi: 10.1016/j.quaint.2006.08.016

    [15]

    方海超,黄朋,孙家文,等. 鸭绿江端元粒度分级样品常量元素控制因素分析及物源识别[J]. 海洋地质与第四纪地质,2019,39(3):72-83.

    FANG H C,HUANG P,SUN J W,et al. Provenance and controlling factors of major elements in graded components of sediments from the Yalu River[J]. Marine Geology & Quaternary Geology,2019,39(3):72-83.

    [16]

    苏妮,毕磊,郭玉龙,等. 木兰溪河口及邻近海域表层沉积物稀土元素组成与物源判别[J]. 海洋地质与第四纪地质,2018,38(1):150-159.

    SU N,BI L,GUO Y L,et al. Rare earth element compositions and provenance implications:a case from sediments of the Mulanxi River Estuary and surrounding sea area[J]. Marine Geology & Quaternary Geology,2018,38(1):150-159.

    [17]

    DINIS P,GARZANTI E,VERMEESCH P,et al. Climatic zonation and weathering control on sediment composition (Angola)[J]. Chemical Geology,2017,467:110-121. doi: 10.1016/j.chemgeo.2017.07.030

    [18]

    WEST A,GALY A,BICKLE M. Tectonic and climatic controls on silicate weathering[J]. Earth and Planetary Science Letters,2005,235(1/2):211-228.

    [19]

    EGLI M,MIRABELLA A,SARTORI G. The role of climate and vegetation in weathering and clay mineral formation in Late Quaternary soils of the Swiss and Italian Alps[J]. Geomorphology,2008,102(3):307-324.

    [20]

    JU M,WAN S,CLIFT P D,et al. History of human activity in South China since 7 cal ka BP:evidence from a sediment record in the South China Sea[J]. Quaternary Science Reviews,2024,333:108683. doi: 10.1016/j.quascirev.2024.108683

    [21]

    RAYMO M E,RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature,1992,359(6391):117-122. doi: 10.1038/359117a0

    [22]

    BI L,YANG S Y,LI C,et al. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes[J]. Geochemistry,Geophysics,Geosystems,2015,16(9):3034-3052.

    [23]

    YANG J H,CAWOOD P A,DU Y S,et al. Reconstructing Early Permian tropical climates from chemical weathering indices[J]. Geological Society of America Bulletin,2016,128(5/6):739-751.

    [24]

    DENG K,YANG S Y,GUO Y L. A global temperature control of silicate weathering intensity[J]. Nature Communications,2022,13(1):1781. doi: 10.1038/s41467-022-29415-0

    [25]

    LI C,YANG S Y. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins?[J]. American Journal of Science,2010,310(2):111-127. doi: 10.2475/02.2010.03

    [26]

    LIU Z F,COLIN C,HUANG W,et al. Climatic and tectonic controls on weathering in South China and Indochina Peninsula:clay mineralogical and geochemical investigations from the Pearl,Red,and Mekong drainage basins[J]. Geochemistry,Geophysics,Geosystems,2007,8(5):Q05005.

    [27]

    CLARK M K,SCHOENBOHM L M,ROYDEN L H,et al. Surface uplift,tectonics,and erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics,2004,23(1):601-620.

    [28]

    CLIFT P D,LONG H V,HINTON R,et al. Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments[J]. Geochemistry,Geophysics,Geosystems,2008,9(4):Q04039.

    [29]

    LI Z,SAITO Y,MATSUMOTO E,et al. Climate change and human impact on the Song Hong (Red River) Delta,Vietnam,during the Holocene[J]. Quaternary International,2006,144(1):4-28. doi: 10.1016/j.quaint.2005.05.008

    [30]

    LE T P Q,GARNIER J,GILLES B,et al. The changing flow regime and sediment load of the Red River,Viet Nam[J]. Journal of Hydrology,2007,334(1):199-214.

    [31]

    LAN C Y,CHUNG S L,SHEN J J S,et al. Geochemical and Sr-Nd isotopic characteristics of granitic rocks from northern Vietnam[J]. Journal of Asian Earth Sciences,2000,18(3):267-280. doi: 10.1016/S1367-9120(99)00063-2

    [32]

    LELOUP P H,ARNAUD N,LACASSIN R,et al. New constraints on the structure,thermochronology,and timing of the Ailao Shan-Red River shear zone,SE Asia[J]. Journal of Geophysical Research:Solid Earth,2001,106(B4):6683-6732. doi: 10.1029/2000JB900322

    [33]

    BORGES J,HUH Y. Petrography and chemistry of the bed sediments of the Red River in China and Vietnam:provenance and chemical weathering[J]. Sedimentary Geology,2007,194(3/4):155-168.

    [34]

    TRAN H,POLYAKOV G V,TRAN A T,et al. Intraplate Magmatism and Metallogeny of North Vietnam[M]. Cham:Springer International Publishing,2015.

    [35]

    HE J,GARZANTI E,JIANG T,et al. Mineralogy and geochemistry of modern Red River sediments (North Vietnam):provenance and weathering implications[J]. Journal of Sedimentary Research,2022,92:1169-1185. doi: 10.2110/jsr.2022.045

    [36]

    LEHNER B,GRILL G. Global river hydrography and network routing:baseline data and new approaches to study the world's large river systems[J]. Hydrological Processes,2013,27(15):2171-2186. doi: 10.1002/hyp.9740

    [37]

    FICK S E,HIJMANS R J. World Clim 2:new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology,2017,37(12):4302-4315. doi: 10.1002/joc.5086

    [38]

    BOUCHEZ J,GAILLARDET J,FRANCELANORD C,et al. Grain size control of river suspended sediment geochemistry:clues from Amazon River depth profiles[J]. Geochemistry,Geophysics,Geosystems,2011,12(3):Q03008.

    [39]

    LI F L,YANG S Y,BREECKER D O,et al. Responses of silicate weathering intensity to the Pliocene-Quaternary cooling in East and Southeast Asia[J]. Earth and Planetary Science Letters,2022,578:117301. doi: 10.1016/j.jpgl.2021.117301

    [40]

    GARZANTI E,ANDÓ S,FRANCE-LANORD C,et al. Mineralogical and chemical variability of fluvial sediments:2. suspended-load silt (Ganga–Brahmaputra,Bangladesh)[J]. Earth and Planetary Science Letters,2011,302(1):107-120.

    [41]

    GARZANTI E,ANDÒ S,FRANCE-LANORD C,et al. Mineralogical and chemical variability of fluvial sediments:1. bedload sand (Ganga–Brahmaputra,Bangladesh)[J]. Earth and Planetary Science Letters,2010,299(3):368-381.

    [42]

    LUPKER M,FRANCE-LANORD C,GALY V,et al. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga Basin)[J]. Geochimica et Cosmochimica Acta,2012,84:410-432. doi: 10.1016/j.gca.2012.02.001

    [43]

    宁泽,张勇,林学辉,等. 闽北近岸海域表层沉积物的风化特征及物源指示[J]. 海洋地质前沿,2020,36(10):12-21.

    NING Z,ZHANG Y,LIN X H,et al. Weathering characteristics and provenance of the surface sediments in the offshore of northern Fujian[J]. Marine Geology Frontiers,2020,36(10):12-21.

    [44]

    HATANO N,YOSHIDA K,SASAO E. Effects of grain size on the chemical weathering index:a case study of Neogene fluvial sediments in southwest Japan[J]. Sedimentary Geology,2019,386:1-8. doi: 10.1016/j.sedgeo.2019.03.017

    [45]

    EYNATTEN H V,TOLOSANA-DELGADO R,KARIUS V. Sediment generation in modern glacial settings:grain-size and source-rock control on sediment composition[J]. Sedimentary Geology,2012,280:80-92. doi: 10.1016/j.sedgeo.2012.03.008

    [46]

    GARZANTI E,VERMEESCH P,VEZZOLI G,et al. Congo River sand and the equatorial quartz factory[J]. Earth-Science Reviews,2019,197:102918. doi: 10.1016/j.earscirev.2019.102918

    [47]

    DUAN Z F,LI C,GUO Y L,et al. Sr-Nd isotopic fingerprints of Red River sediments and its implication for provenance discrimination in the South China Sea[J]. Marine Geology,2023,457:106997. doi: 10.1016/j.margeo.2023.106997

    [48]

    PANG H L,PAN B T,GARZANTI E,et al. Mineralogy and geochemistry of modern Yellow River sediments:implications for weathering and provenance[J]. Chemical Geology,2018,488:76-86. doi: 10.1016/j.chemgeo.2018.04.010

    [49]

    RASHID S A,GANAI J A,MASOODI A,et al. Major and trace element geochemistry of lake sediments,India:implications for weathering and climate control[J]. Arabian Journal of Geosciences,2015,8(8):5677-5684. doi: 10.1007/s12517-014-1639-9

    [50]

    MAHER K. The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes[J]. Earth and Planetary Science Letters,2011,312(1):48-58.

    [51]

    SCHOENBOHM,MARIE L. Cenozoic tectonic and geomorphic evolution of the Red River region,Yunnan Province,China[D]. Cambridge:Massachusetts Institute of Technology,2004.

    [52]

    MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987,287(5):401-428. doi: 10.2475/ajs.287.5.401

    [53]

    CHETELAT B,LIU C Q,ZHAO Z Q,et al. Geochemistry of the dissolved load of the Changjiang Basin rivers:anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta,2008,72(17):4254-4277. doi: 10.1016/j.gca.2008.06.013

    [54]

    GUO Y L,YANG S Y,SU N,et al. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices[J]. Geochimica et Cosmochimica Acta,2018,227:48-63. doi: 10.1016/j.gca.2018.02.015

  • 加载中

(6)

(2)

计量
  • 文章访问数:  31
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-08-17
刊出日期:  2025-04-28

目录