二氧化碳封存断层构造区微震活动规律新认识

李永臣, 罗子金, 马科迪, 方小宇, 田华丰, 吕言新, 辛毅. 二氧化碳封存断层构造区微震活动规律新认识——以美国Decatur项目为例[J]. 海洋地质前沿, 2025, 41(3): 65-77. doi: 10.16028/j.1009-2722.2024.235
引用本文: 李永臣, 罗子金, 马科迪, 方小宇, 田华丰, 吕言新, 辛毅. 二氧化碳封存断层构造区微震活动规律新认识——以美国Decatur项目为例[J]. 海洋地质前沿, 2025, 41(3): 65-77. doi: 10.16028/j.1009-2722.2024.235
LI Yongchen, LUO Zijin, MA Kedi, FANG Xiaoyu, TIAN Huafeng, LYU Yanxin, XIN Yi. New understanding of microseismic activity in fault zones for geological carbon storage: a case study of the Decatur project in the United States[J]. Marine Geology Frontiers, 2025, 41(3): 65-77. doi: 10.16028/j.1009-2722.2024.235
Citation: LI Yongchen, LUO Zijin, MA Kedi, FANG Xiaoyu, TIAN Huafeng, LYU Yanxin, XIN Yi. New understanding of microseismic activity in fault zones for geological carbon storage: a case study of the Decatur project in the United States[J]. Marine Geology Frontiers, 2025, 41(3): 65-77. doi: 10.16028/j.1009-2722.2024.235

二氧化碳封存断层构造区微震活动规律新认识

  • 基金项目: 国家自然科学基金“深层干热岩钻进井壁围岩宏细观破裂机理及稳定性控制研究”(52274231),“超深超高压气藏高效开采科学问题”(52034006)
详细信息
    作者简介: 李永臣(1987—),男,硕士,高级工程师,主要从事非常规油气勘探开发地质方面的研究工作. E-mail:2358432202@qq.com
    通讯作者: 方小宇(1982—),男,硕士,正高级工程师,主要从事二氧化碳地质封存方面的研究工作. E-mail:fangxy@zjblab.com
  • 中图分类号: P313

New understanding of microseismic activity in fault zones for geological carbon storage: a case study of the Decatur project in the United States

More Information
  • 基于美国Decatur二氧化碳封存项目,探讨碳封存过程中地层厚度、构造应力状态以及CO2注入引发的微地震活动之间的相互关系,为碳封存选址和安全性评估提供科学依据。通过Decatur项目的储层(Mt. Simon砂岩)和盖层(Argenta地层)厚度特性,研究其对注入压力扩散的影响;结合构造应力分布和历史累积数据,分析前寒武基底断层滑动的敏感性。CO2注入点附近的Argenta地层较薄或缺失,没有足够的厚度来抑制压力向基底断层迁移,导致微地震事件主要发生在前寒武基底。CO2注入到Mt. Simon砂岩储层后,孔隙压力升高先集中在注入点附近,随后压力扩散到更大范围,单纯的CO2注入并不足以完全诱发大规模的微地震活动。前寒武基底因历史构造应力多次累积,对流体注入引发的应力释放更为敏感。在Decatur项目中,当CO2注入速率达到125~140万t/a时,诱发了断层滑动和微地震活动。碳封存选址应从地层厚度、构造应力状态和注入诱发机制上进行全面评估,确保注入的安全性和长期稳定性。

  • 加载中
  • 图 1  Decatur项目注入井和监测井分布示意图

    Figure 1. 

    图 2  Decatur项目地层柱状图

    Figure 2. 

    图 3  Decatur项目层位解释

    Figure 3. 

    图 4  CCS1和CCS2连井对比图

    Figure 4. 

    图 5  CO2封存区构造示意图

    Figure 5. 

    图 6  前寒武系层位和断层示意图

    Figure 6. 

    图 7  Decatur项目断层和微地震事件

    Figure 7. 

    图 8  连井剖面上微地震事件

    Figure 8. 

    图 9  热-流-固-化多物理场耦合机理

    Figure 9. 

    图 10  多物理场耦合简化模型

    Figure 10. 

    图 11  区域孔隙压力示意图

    Figure 11. 

    图 12  库伦破裂应力示意图

    Figure 12. 

    图 13  断层1的摩尔库伦图

    Figure 13. 

    表 1  注入井和监测井汇总表

    Table 1.  Summary of the injection wells and monitoring wells

    井 名 用 途 项目名称 运行时间 数据来源
    CCS1 CO2注入井1(总注入量100万 t) IBDP 2011-11 文献[9]
    VW1 监测井1 IBDP 2011-11 文献[9]
    GM1 IBDP三维地震剖面 IBDP 2011-11 文献[9]
    IBDP微震监测
    CCS2 CO2注入井2(注入量100万 t/a) ICCS 2017-04 文献[9]
    VW2 监测井2 ICCS 2017-04 文献[9]
    GM2 ICCS地球物理监测 ICCS 2012 文献[9]
    下载: 导出CSV

    Table 2.  Information of the litho-stratigraphy in the Decatur project

    地层名称 地层用途 CCS1地层顶部深度/ft 地层岩性 地层厚度/ft
    Eau Clair页岩 顶部盖层 5221 致密粉砂岩、石灰岩、砂岩和页岩 324
    Mt. Simo砂岩 上部 Mt. Simon E CO2监测 5545 泥岩和砂岩 376
    中部 Mt. Simon D 5921 致密区,细—中等粒度的砂岩 201
    Mt. Simon C 6122 致密区,细—粗粒度的砂岩 306
    下部 Mt. Simon B 6428 平面层理砂岩 252
    Mt. Simon A-上 CO2封存 6680 粗—细粒度的砂岩 250
    Mt. Simon A-下 6930 砂岩和砾岩,有一个薄的低渗透区,作为CO2向上迁移的天然屏障 121
    Argenta砂岩 底部隔离层 7051 砾岩和粗砂岩 114
    前寒武系基底 7165 风化的流纹岩,高度破碎
    下载: 导出CSV

    表 3  数值模拟地层材料参数汇总表

    Table 3.  Summary of material parameters for numerical simulation

    材料参数 Mt. Simon砂岩层 Argenta地层 前寒武系基底 断层
    渗透率/10−3 μm2 0.285 1.65×10−3 1.76×10−6 5.85
    孔隙度/% 0.115 0.138 0.005 0.180
    体模量/GPa 37.27 43.52 70.2 3.8
    剪切模量/GPa 24.2 27.9 45.0 1.2
    泊松比 0.23 0.22 0.22 0.22
    粘聚力/MPa 25.2 11.2 0.8 2
    摩擦角/(°) 47 42 60 31
    下载: 导出CSV
  • [1]

    陈建文,孙晶,杨长清,等. 东海陆架盆地新生界咸水层二氧化碳封存地质条件及封存前景[J]. 海洋地质前沿,2023,39(10):14-21.

    CHEN J W,SUN J,YANG C Q,et al. Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(10):14-21.

    [2]

    可行,陈建文,龚建明,等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿,2023,39(7):1-12.

    KE X,CHEN J W,GONG J M,et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(7):1-12.

    [3]

    European Environment Agency. European climate risk assessment:exclusive summary[R]. Denmark:European Environment Agency,2024.

    [4]

    可行,陈建文,龚建明,等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J]. 海洋地质与第四纪地质,2023,43(2):55-65.

    KE X,CHEN J W,GONG J M,et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2023,43(2):55-65.

    [5]

    李姜辉,余凤玲,牛雄伟,等. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展,2023,38(11):1121-1144.

    LI J H,YU F L,NIU X W,et al. Advances and future development of monitoring technologies for marine carbon storage[J]. Advances in Earth Science,2023,38(11):1121-1144.

    [6]

    魏晓琛,李琦,邢会林,等. 地下流体注入诱发地震机理及其对CO2地下封存工程的启示[J]. 地球科学进展,2014,29(11):1226.

    WEI X C, LI Q, XING H L, et al. Mechanism of underground fluid injection induced seismicity and its implications for CCS projects[J]. Advances in Earth Science,2014,29(11):1226-1241.

    [7]

    FINLEY R J. An overview of the Illinois Basin Decatur project[J]. Greenhouse Gases:Science and Technology,2014,4(5):571-579. doi: 10.1002/ghg.1433

    [8]

    GOLLAKOTA S,MCDONALD S. Commercial-scale CCS project in Decatur,Illinois-construction status and operational plans for demonstration[J]. Energy Procedia,2014,63:5986-5993. doi: 10.1016/j.egypro.2014.11.633

    [9]

    ZALUSLI W,LEE S Y. IBDP final static geological model development and dynamic modelling. CO2 datashare,2020 [EB/OL]. [2024-06-12]. https://co2datashare.org.

    [10]

    马馨蕊,梁杰,李清,等. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿,2024,40(10):1-18.

    MA X R,LIANG J,LI Q,et al. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers,2024,40(10):1-18.

    [11]

    赵改善. 二氧化碳地质封存地球物理监测:现状,挑战与未来发展[J]. 石油物探,2023,62(2):194-211.

    ZHAO G S. Geophysical monitoring for geological carbon sequestration:present status,challenges,and future development [J].Geophysical Prospecting for Petroleum,2023,62(2):194-211.

    [12]

    GREENBERG S. An assessment of geological sequestration options in the Illinois Basin-Phase II and III[R]. Washington:U. S. Department of Energy,2020.

    [13]

    FREIBURG J T,RITZI R W,KEHOE K S. Depositional and diagenetic controls on anomalously high porosity within a deeply buried CO2 storage reservoir:the Cambrian Mt. Simon sandstone,Illinois Basin,USA[J]. International Journal of Greenhouse Gas Control. 2016,55:42-54.

    [14]

    WU X W,QIN S Q,XUE L,et al. Physical mechanism of major earthquakes by earthquake cases[J]. Chinese Journal of Geophysics,2016,59(10):3696-3710.

    [15]

    秦四清,徐锡伟,胡平,等. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J]. 地球物理学报,2010,53(4):1001-1014.

    QIN S Q,XU T W,HU B,et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics.,2010,53(4):1001-1014.

    [16]

    惠钢,陈胜男,顾斐. 流体-地质力学耦合建模表征水力压裂诱发地震:以加拿大Fox Creek地区为例[J]. 地球物理学报,2021,64(3):864-875.

    HUI G,CHEN S N,GU F. Coupled fluid-geomechanics modeling to characterize hydraulic fracturing-induced earthquakes:case study in Fox Creek,Canada[J]. Chinese Journal of Geophysics,2021,64(3):864-875.

    [17]

    RUTQVIST J,RINALDI A P,CAPPA F,et al. Fault activation and induced seismicity in geological carbon storage:lessons learned from recent modeling studies[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8:789-804. doi: 10.1016/j.jrmge.2016.09.001

    [18]

    ZOBACK M D,GORELICK S M. Earthquake triggering and large-scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences,2012,109(26):10164-10168. doi: 10.1073/pnas.1202473109

    [19]

    MAZZOLDI A,RINALDI A P,BORGIA A,et al. Induced seismicity within geological carbon sequestration projects:maximum earthquake magnitude and leakage potential from undetected faults[J]. International Journal of Greenhouse Gas Control,2012,10:434-442. doi: 10.1016/j.ijggc.2012.07.012

    [20]

    VERDON J P. Significance for secure CO2 storage of earthquakes induced by fluid injection[J]. Environmental Research Letters,2014,9(6):064022. doi: 10.1088/1748-9326/9/6/064022

    [21]

    TARON J,ELSWORTH D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):855-864. doi: 10.1016/j.ijrmms.2009.01.007

    [22]

    TARON J,ELSWORTH D,MIN K B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable,fractured porous media[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):842-854. doi: 10.1016/j.ijrmms.2009.01.008

    [23]

    LYU Y,YUAN C,ZHU X,et al. Influence of permeability anisotropy on rock damage and heat transfer in geothermal reserv-oir[J]. Arabian Journal of Geosciences,2021,14(13):1293. doi: 10.1007/s12517-021-07705-z

    [24]

    LYU Y X,YUAN C,ZHU X,et al. THMD analysis of fluid injection-induced fault reactivation and slip in EGS[J]. Geothermics,2022,99:102303. doi: 10.1016/j.geothermics.2021.102303

    [25]

    GAN Q,ELSWORTH D. Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs[J]. Journal of Geophysical Research:Solid Earth,2014,119(4),3340-3353.

    [26]

    GAN Q,LEI,Q. Induced fault reactivation by thermal perturbation in enhanced geothermal systems[J]. Geothermics,2020,86:101814. doi: 10.1016/j.geothermics.2020.101814

    [27]

    BONDARENKO N,PODLADCHIKOV Y,MAKHNENKO R. Hydromechanical impact of basement rock on injection-induced seismicity in Illinois Basin[J]. Scientific Reports,2022,12(1):15639. doi: 10.1038/s41598-022-19775-4

    [28]

    KIVI I R,PUJADES E,RUTQVIST J,et al . Cooling-induced reactivation of distant faults during long-term geothermal energy production in hot sedimentary aquifers[J]. Scientific Reports,2022,12(1):2065. doi: 10.1038/s41598-022-06067-0

    [29]

    GIUNTOLI F,MENEGON L,SIRON G,et al. Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths[J]. Nature Communications,2024,15(1):480. doi: 10.1038/s41467-023-44641-w

    [30]

    URPI L,RINALDI A P,RUTQVIST J,et al. Fault stability perturbation by thermal pressurization and stress transfer around a deep geological repository in a clay formation[J]. Journal of Geophysical Research:Solid Earth,2019,124(8):8506-8518. doi: 10.1029/2019JB017694

  • 加载中

(13)

(3)

计量
  • 文章访问数:  197
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2024-10-11
刊出日期:  2025-03-28

目录