A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier: a case study of the hexavalent chromium contaminated site
-
摘要: 可渗透反应墙(PRB)是一种高效的地下水污染原位修复技术。不同水文地质条件下,污染场地墙体位置布设合理性影响其修复效果,而利用地下水数值模拟可实现墙体位置优化。文章以某Cr6+污染地下水场地为例,基于Visual Modflow建立了研究区平面二维稳定流数值模型,并通过模型检验。根据墙体的设计尺寸(长20 m×宽2 m×深12 m)及填充材料的渗透系数(80 m/d),利用所建模型分别计算了4种布设方案(墙体尺寸大小和填充材料渗透系数相同,布设位置不同)下墙体的捕获区宽度、粒子滞留时间和通过墙体的Cr6+通量。结果表明:4种布设方案模拟的滞留时间和捕获区宽度取值差异性不大,变异系数小于2%;Cr6+通量差别较大,变异系数高达76.32%,主要由地下水中Cr6+浓度空间分布不均引起。对比分析4种方案的各评价指标,方案2求得的捕获区宽度为21.9 m,粒子滞留时间为4.1 d,Cr6+去除量可达127.7 mg/d,可作为最佳布设方案。本研究建立的地下水流数值模型符合场地实际情况,可有效评估PRB截获污染羽的范围和去除目标污染物的能力,为铬渣类污染场地PRB原位修复工程设计与实施提供技术支撑和参考依据。Abstract: Permeable reactive barrier is an efficient in-situ remediation technology for groundwater pollution. The remediation effect is affected by the barrier position under different hydrogeological conditions of contaminated sites. However, the wall location can be optimized through groundwater numerical simulation. A 2D steady state numerical model for a hexavalent chromium contaminated site is established and identified by using Visual Modflow. Based on a designed barrier size (length of 20 m, width of 2 m and depth 12 m) and hydraulic conductivity (80 m/d) of the filled material, three indexes, the hydraulic capture zone width, residence time and hexavalent chromium flux of four schemes (the same barrier size and hydraulic conductivity of the reaction material, but different locations) are estimated via numerical simulation, respectively. The results show that there is no significant difference between the residence time and the hydraulic capture zone width of the four schemes, in which the coefficient of variation is less than 2%. However, the coefficient of variation of the hexavalent chromium fluxes is as high as 76.32%, which is mainly caused by the uneven spatial distribution of hexavalent chromium concentration in groundwater. By analyzing the indexes of four plans, scheme 2 is selected as the best design, in which the capture zone width is 21.9 m, the residence time is 4.1 days and the hexavalent chromium flux is 127.7 mg/d. The established model is suitable to the actual site situation, which can evaluate the width of PRB to intercept the pollution plume and the ability to effectively remove the target pollutant, and can also provide technical support and reference for the design and implementation of PRB in-situ remediation of chromium contaminated sites.
-
-
[1] 李雅, 张增强, 沈锋,等. 堆肥+零价铁可渗透反应墙修复黄土高原地下水中铬铅复合污染[J]. 环境工程学报, 2014, 8(1):110-115.[LI Y, ZHANG Z Q, SHEN F, et al. Remediation of Cr-Pb polluted groundwater using a mixed zero-valent iron-compost permeable reactive barrier in Loess Plateau aera[J]. Chinese Journal of Environmental Engineering, 2014, 8(1):110-115.(in Chinese)]
[2] 陈梦舫,钱林波, 晏井春,等. 地下水可渗透反应墙修复技术原理、设计及应用[M].北京:科学出版社, 2017.[CHEN M F, QIAN L B, YAN J C, et al. Principle, design and application of permeable reactive barrier remedy technology for groundwater[M]. Beijing:Science Press, 2017.(in Chinese)]
[3] STARR R C, CHERRY J A. In situ remediation of contaminated ground water:the funnel-and-gate system[J]. Ground Water, 1994, 32(3):465-476.
[4] US AF. Three-Dimensional numerical modeling of groundwater flow in the vicinity of funnel-and-gate systems[R].AL/EQ-TR-1997-0020/, 1997.
[5] Gavaskar A R. Permeable barriers for groundwater remediation:design, construction, and monitoring[M]. Columbus:Battelle Press,1998.
[6] XU Z G, WU Y Q, YU F. A three-dimensional flow and transport modeling of an aquifer contaminated by perchloroethylene subject to multi-prbremediation[J]. Transport in Porous Media, 2012, 91(1):319-337.
[7] ZINGELMANN M, SCHIPEK M, BITTNER A. Planning of reactive barriers-an integrated, comprehensive but easy to understand modeling approach[M]. Switzerland:UraniumPast and Future Challenges. Springer International Publishing, 2015.
[8] 国家发展和改革委员会, 国家环境保护总局. 铬渣污染综合整治方案[EB/OL]. http://www.docin.com/p-643362419.html.[National development and reform commission, Ministry of Enviromental Protection of China. Comprehensive control plan for chromium residue pollution[EB/OL], http://www.docin.com/p-643362419.html. (in Chinese)]
[9] 李志红,王广才,康飞. 基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化[J]. 水文地质工程地质, 2017, 44(2):57-62.[LI Z H, WANG G C, KANG F. Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence[J]. Hydrogeology & Engineering Geology, 2017, 44(2):57-62.(in Chinese)]
[10] 杨青春,卢文喜,马洪云. Visual Modflow在吉林省西部地下水数值模拟中的应用[J]. 水文地质工程地质, 2005, 32(3):67-69.[YANG Q C, LU W X, MA H Y. Application of Visual Modflow in groundwater modeling in the Western of Jilin Province[J]. Hydrogeology & Engineering Geology, 2005, 32(3):67-69.(in Chinese)]
[11] 薛禹群, 李同斌, 贾贵庭. 地下水动力学[M]. 北京:地质出版社, 1997.[XUE Y Q, LI T B, JIA G T. Groundwater dynamics[M]. Beijing:Geological Press House, 1997.(in Chinese)]
[12] 王涵,刘琦, 张翼龙, 等. 数值模拟法划分地下饮用水源保护区-以内蒙古呼和浩特市城市水源地为例[J]. 水文地质工程地质, 2018, 45(6):29-36.[WANG H, LIU Q, ZHANG Y L, et al. Division of the drinking groundwater protection area based on numerical methods:A case study near Hohhot in Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2018, 45(6):29-36.(in Chinese)]
[13] 郑李军. 污染场地地下水数值模拟的关键问题探讨[J]. 能源环境保护, 2015, 29(1):43-46.[ZHENG L J. Discussion on the key problems of numerical simulation of groundwater at contaminated sites[J]. Energy Environmental Protection, 2015, 29(1):43-46.(in Chinese)]
[14] 沈媛媛, 蒋云钟, 雷晓辉, 等. 地下水数值模拟中人为边界的处理方法研究[J]. 水文地质工程地质, 2008, 35(6):12-15.[SHEN Y Y, JIANG Y ZH, LEI X H, et al. Research on disposal method of artifitial boundary condition in numerical simulation of groundwater flow[J]. Hydrogeology & Engineering Geology, 2008, 35(6):12-15.(in Chinese)]
[15] 卢文喜. 地下水运动数值模拟过程中边界条件问题探讨[J]. 水利学报, 2003, 34(3):33-36.[LU W X. Approach on boundary condition in numerical simulation of groundwater flows[J]. Journal of Hydraulic Engineering, 2003, 34(3):33-36.(in Chinese)]
[16] 周宏博, 孙树林, 柏仇勇, 等. 悬挂式PRB几何尺寸对水文地质参数的敏感性[J]. 水文地质工程地质, 2012, 39(5):21-25.[ZHOU H B, SUN S L, BAI Q Y, et al. Sensitivity of hanging PRB geometry dimension on hydrogeological parameters[J]. Hydrogeology & Engineering Geology, 2012, 39(5):21-25.(in Chinese)]
[17] 李敬杰, 蔡五田, 张涛,等. 铸铁和椰壳活性炭混合介质修复高浓度Cr(Ⅵ)污染地下水研究[J]. 环境污染与防治, 2019, 41(5):551-555.[LI J J, CAI W T, ZHANG T, et al. Study on the remediation of high concentration Cr(Ⅵ) contaminated groundwater by mixed medium of cast iron and coconut shell activated carbon[J]. Environmental Pollution & Control,2019,41(5):551-555.(in Chinese)]
[18] GAVASKAR A R. Design and construction techniques for permeable reactive barriers[J]. Journal of Hazardous Materials, 1999, 68(1/2):41.
[19] US EPA. Permeable reactive barriertechnologiesfor contaminant remediation[R].EPA/600/R-98/125, 1998.
[20] GUPTA N, FOX T C. Hydrogeologic modeling for permeable reactive barriers[J]. Journal of Hazardous Materials,1999,68(1/2):19-39.
-
计量
- 文章访问数: 1638
- PDF下载数: 92
- 施引文献: 0