Energy evolution mechanism of red Pisha-sandstone cement soil under uniaxial compression
-
摘要: 砒砂岩水泥土受荷变形的过程中伴随着能量的积聚和耗散,在能量的驱动下致使水泥土变形破坏。为了探寻单轴加载过程中砒砂岩水泥土的能量演化规律,根据不同养护龄期和不同水泥掺量下砒砂岩水泥土在变形破坏过程中总能量、峰值点总能量、峰值点弹性应变能、峰值点耗散能的演化规律,从能量的角度分析了龄期和水泥掺量对砒砂岩水泥土的影响。研究表明:能量耗散与砒砂岩水泥土的强度衰减密切相关,试样受荷过程中的损伤情况可以用耗散能的多少来反映,砒砂岩水泥土单轴受压破坏的整个过程中,破坏总能量和耗散能均呈“S”状增长,弹性应变能呈先增加后减小的“凸”状趋势发展;随水泥掺量的增加有效能比也随之增加,不同龄期下各水泥掺量的砒砂岩水泥土都是以吸收弹性能为主,而峰值点应变能可以代表水泥土试样的储能极限,因此有效能比、峰值点应变能能够很好地反映砒砂岩水泥土抵抗破坏的能力。通过利用能量分析原理对砒砂岩水泥土的变形过程进行研究,可以打破以往仅仅利用传统的应力-应变强度来描述其破坏特征的思路,为该类材料的受荷变形分析提供了新的方法和思路。Abstract: During the process of deformation of the Pisha-sandstone cement soil under load, energy is accumulated and dissipated, and the cement soil is deformed and destroyed under the driving of energy. In order to explore the law of energy evolution of the Pisha-sandstone cement soil under uniaxial loading, according to the evolution law of total energy, peak point total energy, peak point elastic strain energy and peak point dissipative energy of Pisha-sandstone cement soil in the process of deformation and failure under different curing ages and different cement content, this paper analyzes the influence of age and cement content on the Pisha-sandstone cement soil from the angle of energy influence. The results show that the energy dissipation is closely related to the strength attenuation of the Pisha-sandstone cement soil. The damage of the specimen in the process of loading can be reflected by the amount of dissipated energy. As the cement content increases, the effective energy ratio also increases. At different ages, the Pisha-sandstone cement soil with different cement content mainly absorbs elastic energy, and the peak strain energy can represent the storage energy limit of cement soil sample. Therefore, the effective energy ratio and peak strain energy can well reflect the ability of the Pisha-sandstone cement soil to resist failure. By using the principle of energy analysis to study the deformation process of the sandstone cement soil, it can break the previous idea of using only the traditional stress-strain strength to describe its failure characteristics, and provide new methods and ideas for the analysis of this type of material.
-
Key words:
- Pisha-sandstone /
- cement soil /
- uniaxial compression /
- energy mechanism /
- dissipative energy
-
-
[1] 耿凯强,李晓丽.冻融循环下红色砒砂岩水泥土力学性能试验研究[J/OL].排灌机械工程学报:1-8.[2019-12-05]. http://kns.cnki.net/kcms/detail/32.1814.TH.20191204.1433.003.html.[GENG K Q, LI X L. Experimental study on mechanical properties of red Pisha-sandstone cement soil under freeze-thaw cycles[J/OL]. Journal of Drainage and Irrigation Machinery Engineering:1-8.[2019-12-05]. http://kns.cnki.net/kcms/detail/32.1814.TH.20191204.1433.003.html.(in Chinese)]
[2] 闫楠,郑晨,白晓宇,等.水泥土搅拌桩复合地基承载特性现场试验[J].科学技术与工程,2019,19(19):247-253.[YAN N, ZHENG C, BAI X Y, et al. Field test on bearing capacity of composite foundation of cement-soil mixing pile[J]. Science Technology and Engineering, 2019, 19(19):247-253.(in Chinese)]
[3] 张经双, 段雪雷. 冻融循环下不同龄期水泥土损伤特性和能量耗散[J]. 硅酸盐通报, 2019, 38(7):2144-2151.[ZHANG J S, DUAN X L. Effects of freeze-thaw cycles on damage characteristics and energy dissipation of soil-cement at different ages[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7):2144-2151.(in Chinese)]
[4] 邬尚赟, 李晓丽, 常平, 等. 鄂尔多斯红色砒砂岩干湿循环作用下力学性能试验研究[J]. 排灌机械工程学报, 2018, 36(7):625-631.[WU S Y, LI X L, CHANG P, et al. Experimental study on mechanical properties of red Pisha-sandstone under dry-wet cycles in Ordos[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(7):625-631.(in Chinese)]
[5] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21):3565-3570.[XIE H P, PENG R D, JU Y. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21):3565-3570.(in Chinese)]
[6] 谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608.[XIE H P, PENG R D, JU Y, et al. On energy analysis of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005,24(15):2603-2608.(in Chinese)]
[7] 孟庆彬, 韩立军, 浦海, 等. 应变速率和尺寸效应对岩石能量积聚与耗散影响的试验[J]. 煤炭学报, 2015, 40(10):2386-2398.[MENG Q B, HAN L J, PU H, et al. Experimental on the effect of strain rate and size on the energy accumulation and dissipation of rock[J]. Journal of China Coal Society, 2015, 40(10):2386-2398.(in Chinese)]
[8] 张志镇, 高峰. 单轴压缩下红砂岩能量演化试验研究[J]. 岩石力学与工程学报, 2012, 31(5):953-962.[ZHANG Z Z, GAO F. Experimental research on energy evolution of red sandstone samples under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5):953-962.(in Chinese)]
[9] WENG L, WU Z J, LIU Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J]. Engineering Fracture Mechanics, 2019, 220:106659.
[10] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1):21-39.
[11] HAMIEL Y, LYAKHOVSKY V, BEN-ZION Y. The elastic strain energy of damaged solids with applications to non-linear deformation of crystalline rocks[J]. Pure and Applied Geophysics, 2011, 168(12):2199-2210.
[12] 黄达, 岑夺丰. 单轴静-动相继压缩下单裂隙岩样力学响应及能量耗散机制颗粒流模拟[J]. 岩石力学与工程学报, 2013, 32(9):1926-1936.[HUANG D, CEN D F. Mechanical responses and energy dissipation mechanism of rock specimen with a single fissure under static and dynamic uniaxial compression using particle flow code simulations[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9):1926-1936.(in Chinese)]
[13] 张志镇, 高峰. 单轴压缩下岩石能量演化的非线性特性研究[J]. 岩石力学与工程学报, 2012, 31(6):1198-1207.[ZHANG Z Z, GAO F. Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6):1198-1207.(in Chinese)]
[14] 左建平, 黄亚明, 熊国军, 等. 脆性岩石破坏的能量跌落系数研究[J]. 岩土力学, 2014, 35(2):321-327.[ZUO J P, HUANG Y M, XIONG G J, et al. Study of energy-drop coefficient of brittle rock failure[J]. Rock and Soil Mechanics, 2014, 35(2):321-327.(in Chinese)]
[15] ZHOU X P, YANG H Q, ZHANG Y X. Rate dependent critical strain energy density factor of Huanglong limestone[J]. Theoretical and Applied Fracture Mechanics, 2009, 51(1):57-61.
[16] 杨圣奇, 徐卫亚, 苏承东. 岩样单轴压缩变形破坏与能量特征研究[J]. 固体力学学报, 2006, 27(2):213-216.[YANG S Q, XU W Y, SU C D. Study on the deformation failure and energy properties of rock specimen in uniaxial compression[J]. Acta Mechanica Solida Sinica, 2006, 27(2):213-216.(in Chinese)]
[17] 阮波, 彭学先, 邓林飞. 水泥土抗剪强度参数试验研究[J]. 铁道科学与工程学报, 2016, 13(4):662-668.[RUAN B, PENG X X, DENG L F. Experimental study on shear strength parameters of cement-soil[J]. Journal of Railway Science and Engineering, 2016, 13(4):662-668.(in Chinese)]
[18] 朱大宇. 水泥土力学性能的试验分析[J]. 建筑材料学报, 2006, 9(3):291-296.[ZHU D Y. Test analysis on mechanical properties of soil-cement mixture[J]. Journal of Building Materials, 2006, 9(3):291-296.(in Chinese)]
[19] 王许诺, 杨平, 鲍俊安, 等. 冻结水泥土无侧限抗压试验研究[J]. 水文地质工程地质, 2013, 40(3):79-83.[WANG X N, YANG P, BAO J A, et al. Test research on unconfined compressive strength of freezing cement soil[J]. Hydrogeology & Engineering Geology, 2013, 40(3):79-83.(in Chinese)]
[20] 杨有海, 刘永河, 任新. 水泥搅拌饱和黄土强度影响因素试验研究[J]. 铁道工程学报, 2016, 33(1):21-25.[YANG Y H, LIU Y H, REN X. Experimental research on the factors influencing strength of cement mixed saturated loess[J]. Journal of Railway Engineering Society, 2016, 33(1):21-25.(in Chinese)]
[21] 赫文秀, 申向东. 掺砂水泥土的力学特性研究[J]. 岩土力学, 2011, 32(增刊1):392-396.[HE W X, SHEN X D. Mechanical behavior of soil-sand-cement admixture[J]. Rock and Soil Mechanics, 2011, 32(Sup 1):392-396.(in Chinese)]
[22] 徐超, 李钊, 阳吉宝. 珊瑚礁砂水泥配比试验研究[J]. 水文地质工程地质, 2014, 41(5):70-74.[XU C, LI Z, YANG J B. Research on mixing proportion test of cemented coral reef sand[J]. Hydrogeology & Engineering Geology, 2014, 41(5):70-74.(in Chinese)]
[23] 陈鑫, 张泽, 李东庆. 尺寸和加载速率对冻结水泥土单轴压缩影响[J]. 水文地质工程地质, 2019, 46(6):74-82.[CHEN X, ZHANG Z, LI D Q. Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil[J]. Hydrogeology & Engineering Geology, 2019, 46(6):74-82.(in Chinese)]
[24] 许国安, 牛双建, 靖洪文, 等. 砂岩加卸载条件下能耗特征试验研究[J]. 岩土力学, 2011, 32(12):3611-3617.[XU G A, NIU S J, JING H W, et al. Experimental study of energy features of sandstone under loading and unloading[J]. Rock and Soil Mechanics, 2011, 32(12):3611-3617.(in Chinese)]
[25] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17):3003-3010.[XIE H P, JU Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17):3003-3010.(in Chinese)]
[26] 李天斌, 陈子全, 陈国庆, 等. 不同含水率作用下砂岩的能量机制研究[J]. 岩土力学, 2015, 36(增刊2):229-236.[LI T B, CHEN Z Q, CHEN G Q, et al. An experimental study of energy mechanism of sandstone with different moisture contents[J]. Rock and Soil Mechanics, 2015, 36(Sup 2):229-236.(in Chinese)]
[27] 黄达, 黄润秋, 张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(2):245-255.[HUANG D, HUANG R Q, ZHANG Y X. Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2):245-255.(in Chinese)]
[28] 温韬, 唐辉明, 刘佑荣, 等. 不同围压下板岩三轴压缩过程能量及损伤分析[J]. 煤田地质与勘探, 2016, 44(3):80-86.[WEN T, TANG H M, LIU Y R, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures[J]. Coal Geology & Exploration, 2016, 44(3):80-86.(in Chinese)]
[29] 苏晓波, 纪洪广, 裴峰, 等. 单轴压缩荷载下含黏结面花岗岩能量演化研究[J]. 哈尔滨工业大学学报, 2018, 50(8):161-167.[SU X B, JI H G, PEI F, et al. Study on energy evolution law of defective granite specimen under uniaxial compressive loading and unloading[J]. Journal of Harbin Institute of Technology, 2018, 50(8):161-167.(in Chinese)]
-
计量
- 文章访问数: 482
- PDF下载数: 58
- 施引文献: 0