渗流作用下黄土含水率变化特征及对隧道工程的影响

张晓宇, 毕焕军, 曹峰, 夏万云. 渗流作用下黄土含水率变化特征及对隧道工程的影响[J]. 水文地质工程地质, 2021, 48(4): 41-47. doi: 10.16030/j.cnki.issn.1000-3665.202004074
引用本文: 张晓宇, 毕焕军, 曹峰, 夏万云. 渗流作用下黄土含水率变化特征及对隧道工程的影响[J]. 水文地质工程地质, 2021, 48(4): 41-47. doi: 10.16030/j.cnki.issn.1000-3665.202004074
ZHANG Xiaoyu, BI Huanjun, CAO Feng, XIA Wanyun. Characteristics of moisture content variation of loess under seepage and its influence on tunnel engineering[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 41-47. doi: 10.16030/j.cnki.issn.1000-3665.202004074
Citation: ZHANG Xiaoyu, BI Huanjun, CAO Feng, XIA Wanyun. Characteristics of moisture content variation of loess under seepage and its influence on tunnel engineering[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 41-47. doi: 10.16030/j.cnki.issn.1000-3665.202004074

渗流作用下黄土含水率变化特征及对隧道工程的影响

  • 基金项目: 中铁第一勘察设计集团有限公司科研项目(17-11)
详细信息
    作者简介: 张晓宇(1982-),男,教授级高级工程师,主要从事铁路工程地质与水文地质勘察。E-mail: 693673108@qq.com
  • 中图分类号: P642.13+1

Characteristics of moisture content variation of loess under seepage and its influence on tunnel engineering

  • 富水黄土隧道施工开挖后含水率增加对隧道工程施工影响较大,前人建立了多种以黄土含水率为指标的工程措施判别标准,但对于黄土含水率的变化原因及时空变化特征缺乏系统研究。银西高铁驿马一号隧道不同工况下含水率的变化特征表明,自然渗流状态下隧道洞身黄土含水率平均为25.9%,局部为软塑;施工排水阶段受渗涌水影响,黄土含水率平均上升到31.3%,下拱腰上升到32.2%,引起了隧底软化、掌子面滑塌失稳、围岩稳定性变差等问题;采取地表降水后,黄土含水率下降为25.4%,改善了黄土的物理性质,确保了隧道施工安全与进度;水位恢复后,黄土含水率平均上升到29.4%,拱顶与上拱腰变化较小,下拱腰达到了37.2%。研究认为地下水渗流变化将使得隧道洞身黄土含水率变幅达15%~33%,通过控制地下水渗流作用可以达到隧道安全施工的目的。

  • 加载中
  • 图 1  驿马一号隧道洞身软塑段分布示意图

    Figure 1. 

    图 2  驿马一号隧道DK255+880—DK256+500间距25 m降水井平面布置示意图

    Figure 2. 

    图 3  YM1DZ-17黄土含水率−深度图

    Figure 3. 

    图 4  驿马一号隧道DK256+280含水率监测横断面

    Figure 4. 

    图 5  驿马一号隧道DK256+280断面围岩含水率测试结果

    Figure 5. 

    图 6  驿马一号隧道不同时空黄土含水率

    Figure 6. 

    表 1  洞内排水黄土含水率监测结果

    Table 1.  Monitoring results of moisture contentof the drained loess in the hole /%

    序号 断面里程 拱顶 上拱腰 下拱腰 平均值
    1 X0+408.9 29.1 29.3 29.7 29.4
    2 X0+413.7 29.9 31.8 32.2 31.3
    3 X0+426.9 29.8 30.1 30.2 30.0
    下载: 导出CSV

    表 2  降水期间掌子面黄土含水率监测结果

    Table 2.  Monitoring results of loess moisture content in the tunnel face during extraction of water /%

    序号 断面里程 拱顶 上拱腰 下拱腰 平均值
    1 DK256+288 25.3 24.9 26.1 25.4
    2 DK256+587 26.8 27.4 28.1 27.4
    3 DK256+978 23.8 26.2 27.9 26.0
    下载: 导出CSV

    表 3  驿马一号隧道不同时空黄土含水率

    Table 3.  Test results of loess moisture content in different time and space of the Yima No.1 tunnel

    时间 里程位置 工况 测试方式 埋深/m 与隧道关系 黄土含水率
    /%
    黄土含水率
    平均值/%
    不同位置最大
    变化值/%
    与上一阶段
    对比
    2015年7月 DK256+415 自然渗流 钻孔取样 58 拱顶 25.2 25.9 1.4
    62 上拱腰 26.6
    66 下拱腰 26.1
    2017年9月 X0+413.7 排水施工 掌子面取样 65 拱顶 29.9 31.3 2.3 上升20.8%
    68 上拱腰 31.8
    71 下拱腰 32.2
    2019年3月 DK256+288 降水施工 掌子面取样 60 拱顶 25.3 25.4 3.0 下降18.8%
    64 上拱腰 24.9
    68 下拱腰 26.1
    2019年5月 DK256+280 水位恢复 断面监测 60 拱顶 24.1 29.4 13.1 上升15.7%
    64 上拱腰 27.0
    68 下拱腰 37.2
    下载: 导出CSV
  • [1]

    张宏刚. 含水率变化对西安地区深基坑土钉支护稳定性的可靠度影响研究[J]. 水利与建筑工程学报,2019,17(4):32 − 38. [ZHANG Honggang. Impacts of moisture content on the reliability of soil nail support stability of deep foundation pit in Xi’an area[J]. Journal of Water Resources and Architectural Engineering,2019,17(4):32 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1144.2019.04.006

    [2]

    郭安邦, 张吾渝, 刘凌霄, 等. 含水率对青海地区原状黄土力学性能的影响[J]. 水利水电技术,2019,50(1):10 − 17. [GUO Anbang, ZHANG Wuyu, LIU Lingxiao, et al. Influence of moisture content on mechanical properties of intact loess in Region Qinghai[J]. Water Resources and Hydropower Engineering,2019,50(1):10 − 17. (in Chinese with English abstract)

    [3]

    邢鲜丽, 李同录, 李萍, 等. 黄土抗剪强度与含水率的变化规律[J]. 水文地质工程地质,2014,41(3):53 − 59. [XING Xianli, LI Tonglu, LI Ping, et al. Variation regularities of loess shear strength with the moisture content[J]. Hydrogeology & Engineering Geology,2014,41(3):53 − 59. (in Chinese with English abstract)

    [4]

    谢超. 泾阳南塬黄土渗透特性及黄土滑坡研究[D]. 西安: 长安大学, 2016.

    XIE Chao. Study on the permeability and landslide of loess in south Jingyang Plateau[D]. Xi’an: Chang’an University, 2016. (in Chinese with English abstract)

    [5]

    赵景波, 王长燕, 刘护军, 等. 陕西洛川黄土剖面上部土层水分入渗规律与含水条件研究[J]. 水文地质工程地质,2010,37(1):124 − 129. [ZHAO Jingbo, WANG Changyan, LIU Hujun, et al. A study of water infiltration and water-bearing condition of the L1—S4 layers in Luochuan, Shaanxi[J]. Hydrogeology & Engineering Geology,2010,37(1):124 − 129. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.01.025

    [6]

    习羽, 李同录, 江睿君, 等. 陇东黄土工程地质分层及其物理特性[J]. 水文地质工程地质,2018,45(4):67 − 72. [XI Yu, LI Tonglu, JIANG Ruijun, et al. Engineering geological stratigraphy and physical properties of the loess in eastern Gansu[J]. Hydrogeology & Engineering Geology,2018,45(4):67 − 72. (in Chinese with English abstract)

    [7]

    李寿福. 黄土隧道渗漏水病害治理方法研究[J]. 甘肃科技,2008,24(8):107 − 109. [LI Shoufu. Study on the control method of seepage leakage disease in Loess tunnel[J]. Gansu Science and Technology,2008,24(8):107 − 109. (in Chinese)

    [8]

    王新东. 高含水率黄土大断面隧道变形特性及施工方法[J]. 铁道建筑,2018,58(5):59 − 61. [WANG Xindong. Deformation characteristics and construction method for large section loess tunnel with high water content[J]. Railway Engineering,2018,58(5):59 − 61. (in Chinese with English abstract)

    [9]

    陈福江. 黄土隧道围岩含水量变化对隧道形态影响的研究[D]. 成都: 西南交通大学, 2008: 1−2.

    CHEN Fujiang. Study on the tunnel's modality impact of changes of surrounding rock water content at loess tunnel[D]. Chengdu: Southwest Jiaotong University, 2008: 1−2. (in Chinese with English abstract)

    [10]

    赵永虎, 罗浩洋, 苗学云, 等. 黄土隧道围岩含水率变化及拱架受力特征研究[J]. 铁道标准设计,2019,63(4):128 − 131. [ZHAO Yonghu, LUO Haoyang, MIAO Xueyun, et al. Research on the characteristics of steel arch stress and variation of water content of loess tunnel surrounding rock[J]. Railway Standard Design,2019,63(4):128 − 131. (in Chinese with English abstract)

    [11]

    张晓宇. 银西高铁软塑黄土隧道地表降水试验研究[J]. 现代隧道技术,2019,56(3):154 − 160. [ZHANG Xiaoyu. Experimental study on ground dewatering of the soft plastic loess tunnel on the Yinchuan-Xi’an railway[J]. Modern Tunnelling Technology,2019,56(3):154 − 160. (in Chinese with English abstract)

    [12]

    陈鹤, 管振祥, 乔春生. 富水黄土隧道的开挖监控及变形判别[J]. 岩土工程界,2002(10):44 − 46. [CHEN He, GUAN Zhenxiang, QIAO Chunsheng. Excavation controlling and deformation identifying of water-rich loess tunnels[J]. Geotechnical Engineering World,2002(10):44 − 46. (in Chinese with English abstract)

    [13]

    刘平贵, 李雪菊. 黄土高原缺水的地质环境及找水途径[J]. 水文地质工程地质,2001,28(3):18 − 22. [LIU Pinggui, LI Xueju. Geological environment deficient in water and way to seek water in the loess plateau[J]. Hydrogeology & Engineering Geology,2001,28(3):18 − 22. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2001.03.005

    [14]

    刘彤. 黄土地区公路隧道渗漏水分析[J]. 路基工程,2007(3):16 − 17. [LIU Tong. Analyze the leakage water of highway tunnel in loess zone[J]. Subgrade Engineering,2007(3):16 − 17. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8825.2007.03.008

    [15]

    杨晓华, 王航, 张小荣. 黄土软岩隧道渗水病害成因与防治对策研究[J]. 公路交通科技(应用技术版),2007,3(5):5 − 7. [YANG Xiaohua, WANG Hang, ZHANG Xiaorong. Study on the causes and prevention of seepage disease of soft rock tunnel in Loess[J]. Journal of Highway and Transportation Research and Development (Application technical edition),2007,3(5):5 − 7. (in Chinese with English abstract)

    [16]

    张志勇, 杨晓华, 李宁军. 甘肃黄土公路隧道渗涌水类型划分[J]. 公路交通科技 (应用技术版),2006,2(5):40 − 43. [ZHANG Zhiyong, YANG Xiaohua, LI Ningjun. Classification of infiltration and water gusher in loess highway tunnel in Gansu Province[J]. Journal of Highway and Transportation Research and Development (Application technical edition),2006,2(5):40 − 43. (in Chinese)

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1284
  • PDF下载数:  101
  • 施引文献:  0
出版历程
收稿日期:  2020-04-23
修回日期:  2020-06-28
刊出日期:  2021-07-15

目录