Evolutional processes of groundwater in Xinglong County based on hydrochemistry and hydrogen and oxygen isotopes
-
摘要: 地下水的补给来源及其水-岩作用过程研究对于识别地下水水化学成分的形成机制、合理开发利用和地下水污染防治具有重要意义。为了了解兴隆县地区地下水水质及其水源涵养条件,为区域地下水污染防治和饮用水源安全提供支持,论文基于兴隆县地下水的水化学和氢氧稳定同位素(δD和δ18O)特征,综合利用Gibbs图解、主要离子比值和统计分析方法,深入讨论了兴隆县地下水的水化学特征、补给来源和水文地球化学演化过程。研究结果表明,兴隆县地下水呈弱碱性,主要为HCO3—Ca·Mg型水,总溶解固体(TDS)变化范围为52.2~556.8 mg/L,平均值为238.0 mg/L;地下水主要来源于大气降水补给,蒸发作用对地下水水化学组分的影响较小;区域地下水的水化学组分主要受碳酸盐岩组成矿物白云石和方解石的溶解-沉淀过程的控制,受上覆铝硅酸盐矿物水解影响不大;区域东部和南部地下水Sr2+含量较高,推测碳酸盐岩下伏侵入岩及古老变质岩分布对Sr2+富集有一定影响;地表水和地下水水力联系密切,部分区域地下水受人类活动影响,造成地下水NO3-含量超过饮用水卫生标准限值。Abstract: The study of the hydrochemical characteristics and water-rock interaction processes of groundwater is of important significance in the evolutional processes, rational development and utilization of groundwater and the prevention of groundwater pollution. This research aims to investigate the groundwater quality and its water conservation conditions in Xinglong County, and to provide support for regional groundwater pollution prevention and safety of drinking water supply sources. Based on hydrochemical and hydrogen-oxygen stable isotope analyses, the hydrochemical characteristics, recharge sources and hydrogeochemical evolutional processes of groundwater in Xinglong County were discussed in detail. The results show that the main hydrochemical type of groundwater is of HCO3-Ca·Mg type in Xinglong County. The groundwater is mainly recharged by precipitation, and is less affected by evaporation. The Gibbs diagram, major ion ratio method and correlation analysis show that the hydrochemical compositions are mainly controlled by the weathering and dissolution of carbonate rocks such as calcite and dolomite, and is less controlled by silicate dissolution. The content of strontium in groundwater in the east and south of the study area is significantly higher than that in the west, indicating that it may be affected by intrusive dykes and metamorphic rocks. In some areas, groundwater is affected by human activities, resulting in excessive concentration of NO3- in groundwater. The study may provide an indication of the hydrochemical evolution of regional groundwater and offer technical support for drinking water safety.
-
-
[1] 王敏. 河北省兴隆县水电资源开发利用探讨[J]. 中国水能及电气化, 2011(6):21-24.[WANG M. Discussion on development and utilization of hydropower resources in Xinglong County of Hebei Province[J]. China Water Power & Electrification, 2011(6):21-24.(in Chinese)]
[2] 王敏. 兴隆县饮用水水源地保护措施概述[J]. 水政水资源, 2012(2):54-55.[WANG M. Overview of protection measures for drinking water sources in Xinglong County[J].Water Administration & Water Resources Management, 2012(2):54-55.(in Chinese)]
[3] 王玉杰. 承德地区地下水的动态特征研究[J]. 工程技术研究, 2018(4):253-254.[WANG Y J. Study on dynamic characteristics of groundwater in Chengde Area.[J]. Engineering and Technological Research, 2018(4):253-254.(in Chinese)]
[4] 多晓松,张小朋,苏宏建,等. 河北承德矿泉水(山泉水)资源优势分析[J]. 矿产勘查,2020,11(4):797-803.[DUO X S, ZHANG X P, SU H J, et al. Analysis on the resource advantage of mineral water (mountain spring water) in Chengde, Hebei Province[J]. Mineral Exploration, 2020, 11(4):797-803.(in Chinese)]
[5] 袁杰,张向宇,张晓红.承德地区地下水分布特征及动态变化趋势分析[J].地下水,2013,35(4):88.[YUAN J, ZHANG X Y, ZHANG X H. Analysis of groundwater distribution characteristics and dynamic change trend in Chengde Area[J]. Ground Water, 2013, 35(4):88.(in Chinese)]
[6] 马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12):4690-4699.[MA Y H, SU C L, LIU W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang:evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016,37(12):4690-4699.(in Chinese)]
[7] 宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究, 2007, 26(1):11-21.[SONG X F, LI F D, YU J J, et al. Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin[J]. Geographical Research, 2007, 26(1):11-21.(in Chinese)]
[8] 崔亚莉, 刘峰, 郝奇琛, 等. 诺木洪冲洪积扇地下水氢氧同位素特征及更新能力研究[J]. 水文地质工程地质, 2015, 42(6):1-7.[CUI Y L, LIU F, HAO Q C, et al. Characteristics of hydrogen and oxygen isotopes and renewability of groundwater in the Nuomuhong alluvial fan[J]. Hydrogeology & Engineering Geology, 2015, 42(6):1-7.(in Chinese)]
[9] 王增银, 刘娟, 崔银祥, 等. 延河泉岩溶水系统Sr/Mg、Sr/Ca分布特征及其应用[J]. 水文地质工程地质, 2003, 30(2):15-19.[WANG Z Y, LIU J, CUI Y X, et al. Distribution characteristics of Sr/Mg, Sr/Ca and applications in Yanhe spring karst water system[J]. Hydrogeology and Engineering Geology, 2003, 30(2):15-19.(in Chinese)]
[10] 王晓曦, 王文科, 王周锋, 等. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质, 2014, 41(1):25-33.[WANG X X, WANG W K, WANG Z F, et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, northeastern China[J]. Hydrogeology & Engineering Geology, 2014, 41(1):25-33.(in Chinese)]
[11] 董维红, 苏小四, 谢渊, 等. 鄂尔多斯白垩系盆地地下水水-岩反应的锶同位素证据[J]. 吉林大学学报(地球科学版), 2010, 40(2):342-348.[DONG W H, SU X S, XIE Y, et al. Groundwater-rock interaction in the Ordos Cretaceous groundwater basin:strontium isotope evidence[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(2):342-348.(in Chinese)]
[12] 苏春利, 张雅, 马燕华, 等. 贵阳市岩溶地下水水化学演化机制:水化学和锶同位素证据[J]. 地球科学, 2019, 44(9):2829-2838.[SU C L, ZHANG Y, MA Y H, et al. Hydrochemical evolution processes of karst groundwater in Guiyang City:evidences from hydrochemistry and 87Sr/86Sr ratios[J]. Earth Science, 2019, 44(9):2829-2838.(in Chinese)]
[13] 孔令健, 王振龙, 王兵. 阜阳市集中式深层地下水饮用水源地水化学特征及成因分析[J]. 中国农村水利水电, 2020(3):78-82.[KONG L J, WANG Z L, WANG B. An analysis of the hydro-chemical characteristics and causes of drinking water source of concentrated deep groundwater in Fuyang City[J]. China Rural Water and Hydropower, 2020(3):78-82.(in Chinese)]
[14] 袁宏颖, 杨树青, 丁雪华, 等. 乌拉特灌域地下水水化学离子特征评价及来源分析[J]. 节水灌溉, 2020(2):67-72.[YUAN H Y, YANG S Q, DING X H, et al. Evaluation and source analysis of chemical ion characteristics of groundwater in wulate irrigation area[J]. Water Saving Irrigation, 2020(2):67-72.(in Chinese)]
[15] 中华人民共和国国土资源部,中华人民共和国水利部. 地下水质标准:GB/T 14848-2017[S]. 北京:中国标准出版社,2017.[Ministry of Land and Resources of the People's Republic of China, Ministry of Water Resources of the People's Republic of China. Standard for groundwater quality:GB/T 14848-2017[S].Beijing:Standards Press of China.(in Chinese)]
[16] 王晓曦. 滦河沿岸地下水循环演化研究[D]. 西安:长安大学,2014.[WANG X X. Groundwater cycle along Luan River[D]. Xi'an:Chang'an University, 2014.(in Chinese)]
[17] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703.
[18] AKO A A, SHIMADA J, HOSONO T, et al. Flow dynamics and age of groundwater within a humid equatorial active volcano (Mount Cameroon) deduced byδD, δ18O, 3H and chlorofluorocarbons (CFCs)[J]. Journal of Hydrology, 2013, 502:156-176.
[19] MATTHEW C,韩冬梅, IAN C, 等. 运城盆地地下水同位素年龄特征及其演化过程和可持续利用[J]. 水文地质工程地质, 2012, 39(6):1-5.[MATTHEW C, HAN D M, IAN C, et al. Distribution of isotopic ages of groundwater and its evolution and sustainable utilization in the Yuncheng Basin[J]. Hydrogeology & Engineering Geology, 2012, 39(6):1-5.(in Chinese)]
[20] 冯亚伟, 陈洪年, 卜华, 等. 羊庄岩溶水系统水化学成因及同位素特征[J].中国岩溶, 2019, 38(3):394-403.[FENG Y W, CHEN H N, BU H, et al. Hydrochemical genesis and isotope characteristics of Yangzhuang karst water system[J]. CarsologicaSinica, 2019, 38(3):394-403.(in Chinese)]
[21] 汪少勇, 何晓波, 丁永建, 等. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素[J]. 环境科学, 2020, 41(1):166-172.[WANG S Y, HE X B, DING Y J, et al. Characteristics and influencing factors of stable hydrogen and oxygen isotopes in groundwater in the permafrost region of the source region of the Yangtze river[J]. Environmental Science, 2020, 41(1):166-172.(in Chinese)]
[22] 张明亮. 滇东黔西地下水氢氧同位素特征[J]. 四川地质学报, 2019, 39(3):508-511.[ZHANG M L. The δ18O and δD values of groundwater in east Yunnan and west Guizhou[J]. Acta Geologica Sichuan, 2019, 39(3):508-511.(in Chinese)]
[23] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1091.
[24] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4):3-31.
[25] 唐金平, 张强, 胡漾,等. 巴中北部岩溶山区地下水化学特征及演化分析[J]. 环境科学, 2019, 40(10):4543-4552.[TANG J P, ZHANG Q, HU Y, et al. Hydrochemical characteristics of karst groundwater in the mountains of northern Bazhong City, China[J]. Environmental Science, 2019, 40(10):4543-4552.(in Chinese)]
[26] 郎赟超, 刘丛强, 韩贵琳, 等. 贵阳市区地表/地下水化学与锶同位素研究[J]. 第四纪研究, 2005, 25(5):655-662.[LANG Y C, LIU C Q, HAN G L, et al. Characterization of water-rock interaction and pollution of karstic hydrological system:a study on water chemistry and Sr isotope of surface/ground water of the Guiyang area[J]. Quaternary Sciences, 2005, 25(5):655-662.(in Chinese)]
[27] 张雅, 苏春利, 马燕华, 等. 水化学和环境同位素对济南东源饮用水源地地下水演化过程的指示[J]. 环境科学, 2019, 40(6):2667-2674.[ZHANG Y, SU C L, MA Y H, et al. Indicators of groundwater evolution processes based on hydrochemistry and environmental isotopes:a case study of the Dongyuan drinking water source area in Jinan City[J]. Environmental Science, 2019, 40(6):2667-2674.(in Chinese)]
-
计量
- 文章访问数: 967
- PDF下载数: 93
- 施引文献: 0