Theory and methodology for evaluation of carrying capacity of regional groundwater resources in China
-
摘要: 开展地下水资源承载能力评价,对于认识区域地下水资源禀赋和开发利用的空间分布状况、建立国家-省级资源环境承载能力监测预警机制、支撑面向国土空间规划的“双评价”研究等具有重要意义。目前,地下水资源承载能力的评价理论与方法仍处于探索之中,在实际工作中缺乏统一的依据。本文基于自然-社会经济系统的承载协调理论,定义了地下水资源承载能力的内涵。从地下水资源的数量、质量、生态属性出发,分别建立了承载本底、承载状态两个层次的区域地下水资源承载能力评价指标体系,确定了评价指标的分级标准和评价流程。以地下水可开采资源模数、地下水开采程度作为基础指标,来初步判断承载本底、承载状态等级,而后利用地下水背景质量等级对承载本底初步结果进行修正,根据区域实际情况选取地下水污染程度、地面沉降程度、海水入侵程度、土壤盐渍化程度等一项或多项指标作为承载状态的修正指标,对承载状态初步结果进行修正;综合承载本底、承载状态评价结果,确定区域地下水资源承载能力。应用此方法研究了京津冀地区的地下水资源承载能力,结果发现京津冀地区地下水资源承载能力水平整体偏弱,202个县级行政区中承载能力强的有18个,较强的有72个,中等的有19个,较弱的有36个,弱的有57个。承载能力强、较强的县级行政区几乎全部位于冀南丘陵山区、冀中山前冲积平原;承载能力弱、较弱的县级行政区主要分布在冀北山地丘陵区、冀东滨海冲积海积平原。京津冀地区地下水资源承载能力研究实例表明该方法具备可操作性,评价结果合理。Abstract: It is of great significance to evaluate the carrying capacity of groundwater resources for understanding the basic situation of regional groundwater resource availability and utilization, establishing a national and provincial level monitoring and warning mechanism for resources and environment carrying capacity, and supporting the research oriented to national spatial planning. The current theory and method for evaluation of carrying capacity of groundwater resources are still in an exploratory status, and there is no unified basis in practice. In this paper, the carrying capacity of groundwater resources is defined based on carrying coordination theory between natural resources system and socioeconomic system. After the analyses of quantity, quality and ecologial feature of groundwater resources in China, an evaluation index system is established respectively from the background and status of carrying capacity. Thus, an index grading method and evaluation process of carrying capacity of groundwater resources is put forward. This index system takes the module of exploitable groundwater resources and degree of groundwater exploitation as the basic indexes. The background and status of carrying capacity are firstly judged by the class of basic indexes. Secondly, level of groundwater background quality is used to modify the background of carrying capacity. As revising indexes of the status, degree of groundwater pollution, land subsidence, salinization and seawater intrusion should be used according to actual condition and the modified status of carrying capacity. Integrated carrying capacity of groundwater resources is determined by the above mentioned background and status. This method is used to evaluate the carrying capacity of groundwater resources in the Beijing-Tianjin-Hebei region, and the results show that the integrated carrying capacity is relatively weak in this region. The number of counties with strong, medium-strong, medium, medium-weak, and weak integrated carrying capacity are 18, 72, 19, 36, and 57, respectively. Counties with strong and medium-strong integrated carrying capacity are mainly located in the hilly and mountain areas of the southern part and piedmont alluvial plain of the central part. Counties with medium-weak and weak integrated carrying capacity are mainly located in hilly and mountain areas of the northern part and coastal alluvial plain of the eastern area. This case study of evaluation of carrying capacity of groundwater resources in the Beijing-Tianjin-Hebei region shows that the evaluation method is feasible, and the result is reasonable.
-
-
[1] 樊杰.资源环境承载能力和国土空间开发适宜性评价方法指南[M].北京:科学出版社,2019.[FAN J. Assessment guidelines for resource and environmental carrying capacity and territorial development suitability[M]. Beijing:Science China Press, 2019.(in Chinese)]
[2] 李瑞敏,杨楠,李小磊,等.资源环境承载能力评价方法探索与实践[M]. 北京:地质出版社,2018.[LI R M, YANG N, LI X L, et al. Exploration and practice of resource and environment carrying capacity evaluation method[M]. Beijing:Geological Publishing House,2018.(in Chinese)]
[3] COHEN J E. Population growth and earth's human carrying capacity[J]. Science, 1995, 269:341-346.
[4] SEIDL I, TISDELL C A. Carrying capacity reconsidered:from Malthus' population theory to cultural carrying capacity[J]. Ecological Economics, 1999, 31(3):395-408.
[5] FALKENMARK M, LUNDQVIST J, WIDSTRAND C. Macro-scale water scarcity requires micro-scale approaches:aspects of vulnerability in semi-arid development[J].Natural Resources Forum, 1989,13(4):258-267.
[6] BROWN A, MATLOCK M D. A review of water scarcity indices and methodologies[R].Fayetteville:University of Arkansas,2011.
[7] RICHTER B D, MATHEWS R, HARRISON D L, et al. Ecologically sustainable water management:managing river flows for ecological integrity[J]. Ecological Applications, 2003, 13(1):206-224.
[8] BERNHARDT E, BUNN S, HART DD, et al. Perspective:The challenge of ecologically sustainable water management[J]. Water Policy, 2006, 8(5):475-479.
[9] 施雅风, 曲耀光. 乌鲁木齐河流域水资源承载力及其合理利用[M]. 北京:科学出版社,1992.[SHI Y F, QU Y G. Water resource carrying capacity and rational utilization in Urumqi River area[M]. Beijing:Science China Press, 1992.(in Chinese)]
[10] 冯尚友, 刘国全. 水资源持续利用的框架[J]. 水科学进展, 1997, 8(4):301-307.[FENG S Y, LIU G Q. A holistic framework for sustaining water resources utilization[J]. Advances in Water Science, 1997, 8(4):301-307.(in Chinese)]
[11] 屈吉鸿,陈南祥,黄强,等. 改进的逼近理想解在地下水资源承载力评价中的应用[J].水利学报,2008, 39(12):1309-1315.[QU J H, CHEN N X, HUANG Q, et al. Improved TOPSIS method for evaluating groundwater carrying capacity[J]. Journal of Hydraulic Engineering, 2008,39(12):1309-1315.(in Chinese)]
[12] 任玉忠, 叶芳, 高树东, 等. 基于主成分分析的潍坊市水资源承载力评价研究[J]. 中国农学通报, 2012, 28(5):312-316.[REN Y Z, YE F, GAO S D, et al. Study on water resources carrying capacity in Weifang City based on principal component analysis[J]. Chinese Agricultural Science Bulletin, 2012, 28(5):312-316.(in Chinese)]
[13] 王荣晶, 张运凤, 张永华, 等. 大型灌区地下水资源承载力评价指标体系及评价方法研究[J]. 华北水利水电学院学报, 2009, 30(3):4-8.[WANG R J, ZHANG Y F, ZHANG Y H, et al. Study on the theory and evaluation method of large-scale irrigation district groundwater resources carrying capacity[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2009, 30(3):4-8.(in Chinese)]
[14] 田静宜, 王新军. 基于熵权模糊物元模型的干旱区水资源承载力研究——以甘肃民勤县为例[J]. 复旦学报(自然科学版), 2013, 52(1):86-93.[TIAN J Y, WANG X J. Assessment of the carrying capacity of water resources in arid areas based on an entropy fuzzy matter element model-A case study in Minqin County, Gansu Province[J]. Journal of Fudan University (Natural Science), 2013, 52(1):86-93.(in Chinese)]
[15] 杨琳琳, 李波, 付奇. 基于BP神经网络模型的新疆水资源承载力情景分析[J]. 北京师范大学学报(自然科学版), 2016, 52(2):216-222.[YANG L L, LI B, FU Q. Scenario analysis of water resources carrying capacity in Xinjiang based on BP neural network model[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(2):216-222.(in Chinese)]
[16] 何仁伟, 刘邵权, 刘运伟. 基于系统动力学的中国西南岩溶区的水资源承载力——以贵州省毕节地区为例[J]. 地理科学, 2011, 31(11):1376-1382.[HE R W, LIU S Q, LIU Y W. Application of system dynamics in analyzing the carrying capacity of water resources in karst region of southwest China-A case study in Bijie region, Guizhou Province[J]. Scientia Geographica Sinica, 2011, 31(11):1376-1382.(in Chinese)]
[17] 张光辉, 费宇红, 刘春华, 等. 华北平原灌溉用水强度与地下水承载力适应性状况[J]. 农业工程学报, 2013, 29(1):1-11.[ZHANG G H, FEI Y H, LIU C H, et al. Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1):1-11.(in Chinese)]
[18] 张宗祜,李烈荣. 中国地下水资源:综合卷[M]. 北京:中国地图出版社,2004.[ZHANG Z H, LI L R. Groundwater resources of China[M]. Beijing:Sino Maps Press,2004.(in Chinese)]
[19] 刘敏, 聂振龙, 王金哲, 等. 华北平原地下水资源承载力模糊综合评价[J]. 水土保持通报, 2014, 34(6):311-315.[LIU M, NIE Z L, WANG J Z, et al. Fuzzy comprehensive evaluation of groundwater resources carrying capacity in North China Plain[J]. Bulletin of Soil and Water Conservation, 2014, 34(6):311-315.(in Chinese)]
[20] 王焰新. 地下水污染与防治[M]. 北京:高等教育出版社,2007.[WANG Y X. Groundwater contamination[M]. Beijing:Higher Education Press,2007.(in Chinese)]
[21] 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3):83-96.[GUO H M, GUO Q, JIA Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3):83-96.(in Chinese)]
[22] 张二勇, 张福存, 钱永, 等. 中国典型地区高碘地下水分布特征及启示[J]. 中国地质, 2010, 37(3):797-802.[ZHANG E Y, ZHANG F C, QIAN Y, et al. The distribution of high iodine groundwater in typical areas of China and its inspiration[J]. Geology in China, 2010, 37(3):797-802.(in Chinese)]
[23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.地下水质量标准GB/T 14848-2017[S]. 北京:中国标准出版社, 2017.[General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard for groundwater quality GB/T 14848-2017[S]. Beijing:Standards Press of China, 2017.(in Chinese)]
[24] 中华人民共和国卫生部, 中国国家标准化管理委员会.生活饮用水卫生标准GB 5749-2006[S]. 北京:中国标准出版社, 2007.[Ministry of Health of the People's Republic of China, Standardization Administration of the People's Republic of China. Standards for drinking water quality GB 5749-2006[S]. Beijing:Standards Press of China, 2007.(in Chinese)]
[25] 武选民, 文冬光, 吴登定, 等. 我国主要平原盆地地下水资源可持续利用的几点思考[J]. 水文地质工程地质, 2005, 32(6):96-99.[WU X M, WEN D G, WU D D, et al. Some thoughts on sustainable utilization of groundwater resource in the main large Plains and basins of China[J]. Hydrogeology and Engineering Geology, 2005, 32(6):96-99.(in Chinese)]
[26] 孙继超,荆继红. 中国地下水环境图(1:500万)[M]. 北京:地质出版社,2017.[SUN J C, JIN J H. Map of groundwater environment in China(1:5000000)[M]. Beijing:Geological Publishing House, 2017.(in Chinese)]
[27] 文冬光,林良俊,孙继朝,等. 中国东部主要平原地下水质量与污染评价[J].地球科学,2012, 37(2):220-228.[WEN D G, LIN L J, SUN J C, et al. Groundwater quality and contamination assessment in the main Plains of Eastern China[J]. Earth Science,2012, 37(2):220-228.(in Chinese)]
[28] 王云龙. 中国地面沉降现状图(1:500万)[M]. 北京:地质出版社,2017.[WANG Y L. Map of land subsidence in China(1:5000000)[M]. Beijing:Geological Publishing House, 2017.(in Chinese)]
[29] 高茂生, 骆永明.我国重点海岸带地下水资源问题与海水入侵防控[J].中国科学院院刊,2016,31(10):1197-1203.[GAO M S, LUO Y M. Change of groundwater resource and prevention and control of seawater intrusion in coastal zone[J]. Bulletin of Chinese Academy of Sciences,2016,31(10):1197-1203.(in Chinese)]
[30] 孙永军,高会军. 中国荒漠化土地分布图(1:500万)[M]. 北京:地质出版社. 2018.[SUN Y J, GAO H J. Desertification land distribution map of China(1:5000000)[M]. Beijing:Geological Publishing House, 2018.(in Chinese)]
[31] 席北斗,李娟,汪洋,等. 京津冀地区地下水污染防治现状、问题及科技发展对策[J].环境科学研究,2019,32(1):1-9.[XI B D, LI J, WANG Y, et al. Strengthening the innovation capability of groundwater science and technology to support the coordinated development of Beijing-Tianjin-Hebei region:status, problems and goals[J]. Research of Environmental Sciences,2019,32(1):1-9.(in Chinese)]
[32] 河北省水利厅. 2018年河北水资源公报[R].石家庄:河北省水利厅,2019.[Water Resources Department of Hebei Province. Report of Water Resources in Hebei, 2018[R].Shijiazhuang:Water Resources Department of Hebei Province, 2019.(in Chinese)]
-
计量
- 文章访问数: 1112
- PDF下载数: 87
- 施引文献: 0