非饱和花岗岩残积土水-气两相驱替过程数值模拟

蔡沛辰, 阙云, 李显. 非饱和花岗岩残积土水-气两相驱替过程数值模拟[J]. 水文地质工程地质, 2021, 48(6): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202010017
引用本文: 蔡沛辰, 阙云, 李显. 非饱和花岗岩残积土水-气两相驱替过程数值模拟[J]. 水文地质工程地质, 2021, 48(6): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202010017
CAI Peichen, QUE Yun, LI Xian. Numerical simulation of water-gas two-phase displacement process in unsaturated granite residual soil[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202010017
Citation: CAI Peichen, QUE Yun, LI Xian. Numerical simulation of water-gas two-phase displacement process in unsaturated granite residual soil[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202010017

非饱和花岗岩残积土水-气两相驱替过程数值模拟

  • 基金项目: 国家自然科学基金项目(41772297);福建省自然科学基金项目(2018J01771)
详细信息
    作者简介: 蔡沛辰(1998-),男,硕士研究生,主要从事细观尺度渗流研究工作。E-mail: peichen_fut@qq.com
    通讯作者: 阙云(1980-),男,教授,博士,主要从事土壤渗流方面的研究和教学工作。E-mail: queyun_2001@fzu.edu.cn
  • 中图分类号: P641.2;TU43

Numerical simulation of water-gas two-phase displacement process in unsaturated granite residual soil

More Information
  • 水流在非饱和土体中的入渗过程实质上是水在下渗的过程中驱替空气的两相流问题。为揭示非饱和花岗岩残积土水-气两相驱替动态渗流机理,选取福州某地原状花岗岩残积土作为研究对象,基于工业CT扫描图像与Level Set方法,研究了原状土样两相驱替的动态特征。结果表明:对于细观尺度水-气两相驱替模拟,Level Set法能很好地捕捉两种不混溶流体间的界面位置;水-气两相驱替过程存在大孔隙优先流特征,且“绕流”现象一般易于出现在孔隙成圆度较高处;两相渗流速度主要受孔道迂回度控制,笔直、较宽孔道,渗流速度相对较高,同时存在明显的“优势通道”,且随渗流时间增大以先急后缓的特征呈正相关变化,最大增速率为 10.77%,最小仅 1.90%;孔道横截面速度大小分布与孔隙结构有关,“回流”和“绕流”现象会使驱替速度骤降,降低幅度可达21.62%;驱替阻力最大出现在孔壁处,孔道越窄,阻力越大;驱替效率与驱替压差成正比关系,且初期加压增速效果显著,可达25.49%,后期仅为1.47%。该研究成果可丰富降雨型滑坡理论基础并预防灾害产生,具有重要的理论价值及工程意义。

  • 加载中
  • 图 1  现场取样

    Figure 1. 

    图 2  二维扫描切片

    Figure 2. 

    图 3  模型a—d二值化图像

    Figure 3. 

    图 4  模型b的计算几何模型及网格质量分布图

    Figure 4. 

    图 5  边界条件设定

    Figure 5. 

    图 6  水、气相占孔隙区域的面积随时间变化曲线

    Figure 6. 

    图 7  不同时刻水-气两相驱替过程动态示意图

    Figure 7. 

    图 8  不同时刻水-气两相驱替过程速度可视化图

    Figure 8. 

    图 9  不同孔道横截面速度分布图

    Figure 9. 

    图 10  不同时刻水-气两相驱替阻力分布情况

    Figure 10. 

    图 11  不同情况下驱替率曲线

    Figure 11. 

    表 1  材料属性

    Table 1.  Material properties

    类别界面张力/(N·m−1密度/(kg·m−3动力黏度/(Pa·s)
    水相4.80×10−210001.01×10−3
    气相4.80×10−21.2091.79×10−5
    下载: 导出CSV

    表 2  两相流驱替研究结果对比

    Table 2.  Comparison of research results of two-phase flow displacement

    类别学者吴丰等[22]冯其红等[21]高亚军等[14]张鹏伟等[23]本文
    对象岩石砂岩岩石孔隙模型花岗岩残积土
    驱替类型气驱水水驱油水驱油气驱水水驱气
    驱替可视化过程微观指进非平行推进微观指进优势渗流回流、绕流
    驱替速度越靠近孔壁流速越小速度越大采出程度越高孔道中心流速最大,
    壁面流速最小
    孔道中心流速并非最大,
    回流使流速骤降
    驱替阻力出口见气后,阻力减小孔道越窄,阻力越大,
    最大值出现在孔壁
    驱替效率出口见气后效率不变受孔喉、驱替速度、
    流体影响
    与压差成正比,
    初期加压增速显著
    下载: 导出CSV
  • [1]

    陈嘉伟, 高游, 付俊杰, 等. 不同类型黏土的强度特性及其预测[J]. 水文地质工程地质,2020,47(3):101 − 106. [CHEN Jiawei, GAO You, FU Junjie, et al. Strength of different clayey soils and its prediction[J]. Hydrogeology & Engineering Geology,2020,47(3):101 − 106. (in Chinese with English abstract)

    [2]

    郑晓磊, 刘志峰, 王晓宏, 等. 二维非均匀多孔介质中不可压两相驱替的有限分析算法[J]. 计算物理,2015,32(5):586 − 594. [ZHENG Xiaolei, LIU Zhifeng, WANG Xiaohong, et al. Finite analytic numerical method for two-Phase incompressible flow in 2D teterogeneous porous media[J]. Chinese Journal of Computational Physics,2015,32(5):586 − 594. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-246X.2015.05.011

    [3]

    乔文静, 叶淑君, 吴吉春. 非均质孔隙介质中两相流的光透法应用研究[J]. 水文地质工程地质,2015,42(2):112 − 119. [QIAO Wenjing, YE Shujun, WU Jichun. A study of the two-phase flow in heterogeneous porous media with the light transmission method[J]. Hydrogeology & Engineering Geology,2015,42(2):112 − 119. (in Chinese with English abstract)

    [4]

    乔梁. 泄洪洞突扩突跌掺气水流特性的数值模拟研究[D]. 昆明: 昆明理工大学, 2014.

    QIAO Liang. Numerical simulation study on aerated water flow characteristics of sudden expansion and sudden fall of spillway tunnel[D]. Kunming: Kunming University of Science and Technology, 2014. (in Chinese with English abstract)

    [5]

    于明旭, 朱维耀, 宋洪庆. 低渗透储层可视化微观渗流模型研制[J]. 辽宁工程技术大学学报(自然科学版),2013,32(12):1646 − 1650. [YU Mingxu, ZHU Weiyao, SONG Hongqing. Development of microscopic visualization flow model of low-permeability reservoir[J]. Journal of Liaoning Technical University(Natural Science),2013,32(12):1646 − 1650. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-0562.2013.12.014

    [6]

    王伟, 赵永攀, 江绍静, 等. 鄂尔多斯盆地特低渗油藏CO2非混相驱实验研究[J]. 西安石油大学学报(自然科学版),2017,32(6):87 − 92. [WANG Wei, ZHAO Yongpan, JIANG Shaojing, et al. Experimental study on CO2 immiscible flooding in ultra-low permeability reservoirs, Ordos Basin[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2017,32(6):87 − 92. (in Chinese with English abstract)

    [7]

    吕伟峰, 冷振鹏, 张祖波, 等. 应用CT扫描技术研究低渗透岩心水驱油机理[J]. 油气地质与采收率,2013,20(2):87 − 90. [LYU Weifeng, LENG Zhenpeng, ZHANG Zubo, et al. Study on waterflooding mechanism in low-permeability cores using CT scan technology[J]. Petroleum Geology and Recovery Efficiency,2013,20(2):87 − 90. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-9603.2013.02.022

    [8]

    毛欢. 基于格子Boltzmann方法的多孔介质内两相流流动特性的研究[D]. 东营: 中国石油大学(华东), 2017.

    MAO Huan. Study on characteristics of two-phase flow in porous media with Lattice Boltzmann method[D]. Dongying: China University of Petroleum (Huadong), 2017. (in Chinese with English abstract)

    [9]

    ØREN P E, BAKKE S. Process based reconstruction of sandstones and prediction of transport properties[J]. Transport in Porous Media,2002,46(2/3):311 − 343.

    [10]

    陈民锋, 姜汉桥. 基于孔隙网络模型的微观水驱油驱替特征变化规律研究[J]. 石油天然气学报(江汉石油学院学报),2006,28(5):91 − 95. [CHEN Minfeng, JIANG Hanqiao. Law of characteristic variations of microscopic water displacement based on pore network model[J]. Journal of Oil and Gas Technology,2006,28(5):91 − 95. (in Chinese with English abstract)

    [11]

    朱光普, 姚军. 基于相场模型的表面活性剂两相流动模拟研究[C] //中国力学学会. 第十届全国流体力学学术会议论文摘要集. 杭州: 中国力学学会, 2018: 212-212.

    ZHU Guangpu, YAO Jun. Research on two-phase flow simulation of surfactant based on phase field model[C] // Chinese Society of Mechanics. Collection of abstracts of the 10th National Conference on fluid mechanics. Hangzhou: Chinese Society of Mechanics, 2018: 212-212. (in Chinese)

    [12]

    OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics,1988,79(1):12 − 49. doi: 10.1016/0021-9991(88)90002-2

    [13]

    王琳琳, 田辉, 李国君. 基于Level Set方法对油水和气水两相界面的数值模拟[J]. 应用力学学报,2010,27(2):298 − 302. [WANG Linlin, TIAN Hui, LI Guojun. Numerical simulation of oil-water and air-water two-phase flow based on level set methods[J]. Chinese Journal of Applied Mechanics,2010,27(2):298 − 302. (in Chinese with English abstract)

    [14]

    高亚军, 姜汉桥, 王硕亮, 等. 基于Level Set有限元方法的微观水驱油数值模拟[J]. 石油地质与工程,2016,30(5):91 − 96. [GAO Yajun, JIANG Hanqiao, WANG Shuoliang, et al. Numerical simulation of microscopic water-oil displacement based on level set finite element method[J]. Petroleum Geology and Engineering,2016,30(5):91 − 96. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-8217.2016.05.023

    [15]

    LIU J J, SONG R. Investigation of water and CO2 flooding using pore-scale reconstructed model based on micro-CT images of Berea sandstone core[J]. Progress in Computational Fluid Dynamics,2015,15(5):317 − 326. doi: 10.1504/PCFD.2015.072013

    [16]

    赵晓磊, 齐秋菊, 郭春超. COMSOL与MATLAB联合仿真的实现方法[J]. 中国新技术新产品,2014(24):17 − 19. [ZHAO Xiaolei, QI Qiuju, GUO Chunchao. The realization method of COMSOL and MATLAB co-simulation[J]. New Technology & New Products of China,2014(24):17 − 19. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-9957.2014.24.016

    [17]

    GUNDE A C, BERA B, MITRA S K. Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations[J]. Energy,2010,35(12):5209 − 5216. doi: 10.1016/j.energy.2010.07.045

    [18]

    杨永飞, 尹振, 姚军, 等. 多孔介质中水气交替注入微观渗流模拟[J]. 地球科学,2013,38(4):853 − 858. [YANG Yongfei, YI Zhen, YAO Jun, et al. Pore-scale simulation of microcosmic flow during water-alternating-gas (WAG) in porous media[J]. Earth Science,2013,38(4):853 − 858. (in Chinese with English abstract)

    [19]

    张石峰, 张冀生, 于炯. 两相流模型数值解[J]. 新疆工学院学报,1996,17(1):45 − 51. [ZHANG Shifeng, ZHANG Jisheng, YU Jiong. Numerical solution of two-phase flow model[J]. Journal of Xinjiang Institute of Technology,1996,17(1):45 − 51. (in Chinese with English abstract)

    [20]

    张丽萍, 陈儒章, 邬燕虹, 等. 风化花岗岩坡地土壤剖面大孔隙特性的空间分布[J]. 土壤学报,2018,55(3):620 − 632. [ZHANG Liping, CHEN Ruzhang, WU Yanhong, et al. Spatial distribution of macro-pore properties in soil profile on a slope of weathering granite[J]. Acta Pedologica Sinica,2018,55(3):620 − 632. (in Chinese with English abstract) doi: 10.11766/trxb201709070266

    [21]

    冯其红, 赵蕴昌, 王森, 等. 基于相场方法的孔隙尺度油水两相流体流动模拟[J]. 计算物理,2020,37(4):439 − 447. [FENG Qihong, ZHANG Yunchang, WANG Sen, et al. Pore-scale oil-water two-phase flow simulation based on phase pield method[J]. Chinese Journal of Computational Physics,2020,37(4):439 − 447. (in Chinese with English abstract)

    [22]

    吴丰, 姚聪, 丛林林, 等. 岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比[J]. 岩性油气藏,2019,31(4):121 − 132. [WU Feng, YAO Cong, CONG Linlin, et al. Comparison of glass etching displacement experiment and finite element numerical simulation for gas-water two-phase seepage in rocks[J]. Lithologic Reservoirs,2019,31(4):121 − 132. (in Chinese with English abstract)

    [23]

    张鹏伟, 胡黎明, MEEGODA Jay, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报,2020,42(1):37 − 45. [ZHANG Pengwei, HU Liming, MEEGODA Jay, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):37 − 45. (in Chinese with English abstract)

  • 加载中

(11)

(2)

计量
  • 文章访问数:  2407
  • PDF下载数:  142
  • 施引文献:  0
出版历程
收稿日期:  2020-10-12
修回日期:  2021-03-05
刊出日期:  2021-11-15

目录