Hydrothermal transfer and bare soil evaporation in surface-groundwater systems in semi-arid areas
-
摘要:
地表-地下水系统水、热迁移转化与裸土蒸发机理研究对于水量平衡以及地表能量转化具有重要意义。以鄂尔多斯盆地风沙滩地区为研究区,基于原位蒸渗仪长期观测,结合数值模拟,选择2种地下水位初始埋深分别为80 cm(浅埋深)和290 cm(深埋深)的情景,研究了变饱和带水热迁移转化的动力学过程以及对裸土蒸发的影响。结果表明:变饱和带土壤水的运动规律受水头梯度和温度梯度的共同驱动,且在不同水位埋深条件下呈现不同的运动方式;浅埋深条件下,受水头梯度的作用,土壤的毛细上升高度能够到达地表,蒸发条件下土壤水在毛细力驱动下向上运移,土壤内部不存在零通量面,温度对水分运动的影响较小,发现当地下水位埋深小于毛细上升高度时,地下水在毛细力作用下直接贡献土壤蒸发;深埋深条件下,水头和温度是土壤水运动过程的关键因素,位于地表以下18 cm以浅土壤内部出现孤立的零通量面,阻止了土壤水的向上运移,导致蒸发量减小。当地下水位埋深大于毛细上升高度的1.6倍时,地下水不再直接参与土壤蒸发,但会间接地影响包气带的水分转化;因此模拟期间浅埋深的裸土累积蒸发量约为深埋深累积蒸发量的4倍。
Abstract:The research on the mechanism of hydrothermal transfer and transformation and bare soil evaporation is of great significance for water balance and surface energy transformation in surface-groundwater systems. In this paper, based on long-term observations of in situ lysimeter test and numerical simulation, two cases for lysimeter with initial groundwater depths of 80 cm (shallow groundwater depth) and 290 cm (deep groundwater depth) are used to examine the dynamic process of hydrothermal transformation in the variable saturation zone with its effect on bare soil evaporation in the “wind-blown sand area” of the Ordos Basin in China. The results indicate that soil water movement in the variable saturation zone is driven by the head gradient and temperature gradient, showing different movement modes under different groundwater depths. For the situation of shallow groundwater depth, the capillary height can reach the surface, soil water transports upwards with little temperature effects driven by capillary force under the effects of head gradient under the evaporation conditions, and there is no zero flux plane in the soil. When the groundwater depth is less than the capillary height, groundwater directly contributes to soil evaporation driven by capillary force. For the situation of deep groundwater depth, head and temperature are the key factors in the soil water movement, and there is an isolated zero flux plane located at 18 cm below the ground surface, which prevents the upward soil water movement and leads to a decrease in evaporation. When the groundwater depth is greater than 1.6 times the capillary height, groundwater no longer directly involves in soil evaporation, but indirectly affects the water conversion in the unsaturated zone. Therefore, during the simulation period, the cumulative bare soil evaporation of the shallow groundwater depth was about 4 times that of the deep groundwater depth.
-
-
[1] BALDOCCHI D D, XU L K. What limits evaporation from Mediterranean oak woodlands - The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?[J]. Advances in Water Resources,2007,30(10):2113 − 2122. doi: 10.1016/j.advwatres.2006.06.013
[2] GONG C C, WANG W K, ZHANG Z Y, et al. Comparison of field methods for estimating evaporation from bare soil using lysimeters in a semi-arid area[J]. Journal of Hydrology,2020,590:125334. doi: 10.1016/j.jhydrol.2020.125334
[3] ZHANG Z Y, WANG W K, GONG C C, et al. Evaporation from seasonally frozen bare and vegetated ground at various groundwater table depths in the Ordos Basin, Northwest China[J]. Hydrological Processes,2019,33(9):1338 − 1348. doi: 10.1002/hyp.13404
[4] 王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7):702 − 718. [WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science,2018,33(7):702 − 718. (in Chinese with English abstract)
[5] CHEN L, WANG W K, ZHANG Z Y, et al. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China[J]. Hydrogeology Journal,2018,26(5):1693 − 1704. doi: 10.1007/s10040-018-1774-6
[6] ZHANG Z Y, WANG W K, WANG Z F, et al. Evaporation from bare ground with different water-table depths based on an in situ experiment in Ordos Plateau, China[J]. Hydrogeology Journal,2018,26(5):1683 − 1691. doi: 10.1007/s10040-018-1751-0
[7] 乔冈, 王文科. 西北干旱内陆盆地区裸土蒸发强度[J]. 吉林大学学报(地球科学版),2014,44(4):1327 − 1332. [QIAO Gang, WANG Wenke. Evaporation intensity of bare soil in northwest arid inland basin[J]. Journal of Jilin University (Earth Science Edition),2014,44(4):1327 − 1332. (in Chinese with English abstract)
[8] 席丹, 王文科, 赵明, 等. 玛纳斯河流域山前平原区蒸散发时空异质性分析[J]. 水文地质工程地质,2020,47(2):25 − 34. [XI Dan, WANG Wenke, ZHAO Ming, et al. Analyses of the spatio-temporal heterogeneity of evapotranspiration in the piedmont of the Manas River Basin[J]. Hydrogeology & Engineering Geology,2020,47(2):25 − 34. (in Chinese with English abstract)
[9] 黄金廷, 马洪云, 张俊, 等. 利用土壤温度估算土壤有效热导系数和水流通量[J]. 地质通报,2015,34(11):2074 − 2082. [HUANG Jinting, MA Hongyun, ZHANG Jun, et al. The estimation of the effective heat conductivity and soil water flux by using the soil temperatures[J]. Geological Bulletin of China,2015,34(11):2074 − 2082. (in Chinese with English abstract)
[10] 赵贵章, 王文科, 侯莉莉, 等. 干旱半干旱地区包气带热参数模型研究[J]. 水文地质工程地质,2009,36(5):107 − 110. [ZHAO Guizhang, WANG Wenke, HOU Lili, et al. Determination of thermal parameter of aerated zone in the arid and semi-arid region[J]. Hydrogeology & Engineering Geology,2009,36(5):107 − 110. (in Chinese with English abstract)
[11] MA Z T, WANG W K, ZHANG Z Y, et al. Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China[J]. Hydrogeology Journal,2019,27(7):2707 − 2718. doi: 10.1007/s10040-019-02012-0
[12] 霍世璐, 王文科, 段磊, 等. 霍城县地下水资源构成变化及驱动力分析[J]. 水文地质工程地质,2020,47(2):51 − 59. [HUO Shilu, WANG Wenke, DUAN Lei, et al. An analysis of groundwater resources composition and driving force in Huocheng county[J]. Hydrogeology & Engineering Geology,2020,47(2):51 − 59. (in Chinese with English abstract)
[13] 杨建锋, 万书勤, 邓伟, 等. 地下水浅埋条件下包气带水和溶质运移数值模拟研究述评[J]. 农业工程学报,2005,21(6):158 − 165. [YANG Jianfeng, WAN Shuqin, DENG Wei, et al. Review of numerical simulation of soil water flow and solute transport in the presence of a water table[J]. Transactions of the Chinese Society of Agricultural Engineering,2005,21(6):158 − 165. (in Chinese with English abstract)
[14] WANG W K, ZHAO G Z, LI J T, et al. Experimental and numerical study of coupled flow and heat transport[J]. Proceedings of the Institution of Civil Engineers - Water Management,2011,164(10):533 − 547. doi: 10.1680/wama.10.00088
[15] HERNÁNDEZ-LÓPEZ M F, GIRONÁS J, BRAUD I, et al. Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels[J]. Hydrological Processes,2014,28(10):3655 − 3669. doi: 10.1002/hyp.9912
[16] LI H S, WANG W F, LIU B L. The daily evaporation characteristics of deeply buried phreatic water in an extremely arid region[J]. Journal of Hydrology,2014,514:172 − 179. doi: 10.1016/j.jhydrol.2014.04.025
[17] ZENG Y, SU Z, WAN L, et al. Diurnal pattern of the drying front in desert and its application for determining the effective infiltration[J]. Hydrology and Earth System Sciences,2009,13(6):703 − 714. doi: 10.5194/hess-13-703-2009
[18] KAMAI T, ASSOULINE S. Evaporation from deep aquifers in arid regions: analytical model for combined liquid and vapor water fluxes[J]. Water Resources Research,2018,54(7):4805 − 4822. doi: 10.1029/2018WR023030
[19] ZHAO M, WANG W K, WANG Z F, et al. Water use of Salix in the variably unsaturated zone of a semiarid desert region based on in situ observation[J]. Journal of Hydrology,2020,591:125579. doi: 10.1016/j.jhydrol.2020.125579
[20] ŠIMUNEK J, VAN GENUCHTEN M T, ŠEJNA M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal,2008,7(2):587 − 600. doi: 10.2136/vzj2007.0077
[21] PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions American Geophysical Union,1957,38(2):222 − 232. doi: 10.1029/TR038i002p00222
[22] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892 − 898. doi: 10.2136/sssaj1980.03615995004400050002x
[23] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[EB/OL]. 1998.
[24] YEH P J F, ELTAHIR E A B. Representation of water table dynamics in a land surface scheme. part II: subgrid variability[J]. Journal of Climate,2005,18(12):1881 − 1901. doi: 10.1175/JCLI3331.1
[25] 王佩浩, 张茜, 张吴平. 基于数值方法的农田土壤零通量面的模拟[J]. 湖南农业科学,2019(3):80 − 84. [WANG Peihao, ZHANG Qian, ZHANG Wuping. Simulation of zero flux plane of farmland soil based on numerical method[J]. Hunan Agricultural Sciences,2019(3):80 − 84. (in Chinese with English abstract)
[26] LEHMANN P, ASSOULINE S, OR D. Characteristic lengths affecting evaporative drying of porous media[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,2008,77(5):1-16.
[27] SHOKRI N, SALVUCCI G D. Evaporation from porous media in the presence of a water table[J]. Vadose Zone Journal,2011,10(4):1309 − 1318. doi: 10.2136/vzj2011.0027
-