长时浸泡红砂岩加/卸荷条件下的剪切特性及细观损伤机理

孙钱程, 徐晓, 丰光亮, 周炳昊, 赵凯冰. 长时浸泡红砂岩加/卸荷条件下的剪切特性及细观损伤机理[J]. 水文地质工程地质, 2024, 51(2): 77-89. doi: 10.16030/j.cnki.issn.1000-3665.202303055
引用本文: 孙钱程, 徐晓, 丰光亮, 周炳昊, 赵凯冰. 长时浸泡红砂岩加/卸荷条件下的剪切特性及细观损伤机理[J]. 水文地质工程地质, 2024, 51(2): 77-89. doi: 10.16030/j.cnki.issn.1000-3665.202303055
SUN Qiancheng, XU Xiao, FENG Guangliang, ZHOU Binghao, ZHAO Kaibing. Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 77-89. doi: 10.16030/j.cnki.issn.1000-3665.202303055
Citation: SUN Qiancheng, XU Xiao, FENG Guangliang, ZHOU Binghao, ZHAO Kaibing. Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 77-89. doi: 10.16030/j.cnki.issn.1000-3665.202303055

长时浸泡红砂岩加/卸荷条件下的剪切特性及细观损伤机理

  • 基金项目: 国家自然科学基金项目(51909136;41972295);土木工程防灾减灾湖北省引智创新示范项目(2021EJD026)
详细信息
    作者简介: 孙钱程(1988—),女,博士,副教授,硕士研究生导师,主要从事岩土工程相关的教学及研究工作。E-mail:qc_sun@ctgu.edu.cn
    通讯作者: 丰光亮(1987—),男,博士,研究员,博士研究生导师,主要从事微震/声发射监测、岩土工程围岩稳定性分析、预警及控制方面的研究工作。E-mail:glfeng@whrsm.ac.cn
  • 中图分类号: TU458+.3

Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions

More Information
  • 三峡库区防洪限制水位(145 m)以下岸坡岩体在库水升降过程中经历了长期浸泡作用,并且水位变化导致岩体受到切向加载剪切和法向卸荷剪切2种工况作用,而岩石剪切特性的差异直接影响岸坡在不同水库运营阶段的稳定性。文章以典型长石石英砂岩为研究对象,开展了不同浸泡天数下砂岩试样的切向加载、法向卸载剪切试验,得到了2种受力条件下砂岩剪切特性的变化规律,并结合溶液测试、SEM测试、核磁共振试验揭示了不同工况下岩石剪切特性产生差异的细观机理。研究结果表明:(1)与初始试样相比,经过80 d的浸泡后,该类试样的黏聚力损失要大于内摩擦角的损失,切向加载剪切所得黏聚力降低了40.5%,内摩擦角最终仅降低了2%,而法向卸荷剪切所得黏聚力降低了31%,内摩擦角最终降低了8%;(2)试样经历长期浸泡导致胶结物矿物被溶解、溶蚀,次生孔隙逐步发育并贯通,孔隙度增大,经过60 d浸泡后,试样的含水率、孔隙度、孔隙结构基本达到稳定状态,克服剪切作用的颗粒骨架几乎不再受浸泡水的影响,这是长期饱水试样剪切性质逐渐弱化并趋于平稳的原因;(3)法向卸荷剪切条件下,剪切主裂纹面与理论剪切面之间偏差增大,破裂面更倾向于形成“S型”和“M型”,实际剪切面的增大变相提高了岩石的抗剪强度,而对岩石抗剪强度贡献最大的是骨架颗粒,故岩石内摩擦角更大,而提供黏聚力的充填胶结物质在张剪破坏中的贡献小,所以法向卸荷中岩石的黏聚力更低。研究成果可为库区涉水边坡在水位升降中的稳定性评价以及考虑实际工况进行参数取值的试验方法选择提供参考。

  • 加载中
  • 图 1  标准砂岩试样(部分)

    Figure 1. 

    图 2  加载路径

    Figure 2. 

    图 3  剪切试验过程中荷载/位移-时间曲线

    Figure 3. 

    图 4  切向加载位移-荷载曲线

    Figure 4. 

    图 5  法向卸荷阶段荷载-位移曲线

    Figure 5. 

    图 6  砂岩抗剪强度参数损伤幅度

    Figure 6. 

    图 7  砂岩试样剪切破坏模式

    Figure 7. 

    图 8  浸泡溶液随浸泡时间变化曲线

    Figure 8. 

    图 9  不同状态下岩样的2000倍扫描电镜图像

    Figure 9. 

    图 10  砂岩试样孔隙参数变化曲线

    Figure 10. 

    图 11  砂岩抗剪强度参数与损伤度关系

    Figure 11. 

    图 12  PFC2D数值模拟试验

    Figure 12. 

    图 13  切向加载剪切过程中力链演化模式

    Figure 13. 

    图 14  法向卸荷剪切过程中力链演化

    Figure 14. 

    表 1  化合物质量占比

    Table 1.  Compound mass ratio

    名称 Na2O MgO Al2O3 SiO2 K2O CaO 其他
    质量占比/% 1.36 2.44 8.43 55.10 1.56 6.85 24.26
    下载: 导出CSV

    表 2  加载方案设置

    Table 2.  Load scheme setup

    试验分组 加载目标值
    第1步
    法向加载/kN
    第2步
    切向加载/kN
    第3步
    法向卸荷/kN
    A组(切向
    加载直剪)
    10,15,20,25,30 切向加载至破坏
    B组(法向
    卸荷直剪)
    30 30,35,40,45 法向卸载至破坏
    下载: 导出CSV

    表 3  砂岩切向加载剪切试验结果

    Table 3.  Results of tangential loading shear test of sandstone

    试样状态 不同法向应力下的切向应力水平 黏聚力
    /MPa
    内摩擦
    角/(°)
    Fn/kN
    10 15 20 25 30
    σ/MPa
    2 3 4 5 6
    初始试样 7.71 8.80 10.23 11.59 12.43 5.26 50.66
    浸泡10 d 6.98 7.95 9.58 10.87 11.68 4.49 50.89
    浸泡20 d 6.52 7.26 9.08 10.23 11.18 3.94 50.89
    浸泡40 d 5.80 6.77 8.55 9.85 10.42 3.35 50.89
    浸泡60 d 5.56 6.25 8.20 9.28 10.02 3.08 49.96
    浸泡80 d 5.51 6.54 7.83 9.02 10.16 3.11 49.64
    下载: 导出CSV

    表 4  砂岩法向卸荷剪切试验结果

    Table 4.  Results of normal loading shear test of sandstone

    试样状态 不同切向应力下的法向应力水平 黏聚力
    /MPa
    内摩擦
    角/(°)
    Fs/kN
    30 35 40 45
    τ/MPa
    6 7 8 9
    初始试样 0.76 1.32 1.91 2.25 4.45 62.87
    浸泡10 d 1.14 1.70 2.28 2.73 3.86 61.71
    浸泡20 d 1.47 2.09 2.59 3.18 3.37 60.59
    浸泡40 d 1.71 2.23 2.84 3.51 3.23 58.97
    浸泡60 d 1.81 2.41 3.03 3.70 3.15 57.81
    浸泡80 d 1.84 2.47 3.12 3.07 57.82
    下载: 导出CSV

    表 5  试样破坏模式

    Table 5.  Sample failure mode

    试样状态 不同剪切试验方案试样破坏应力及破坏模式
    切向加载 σ=6.00 MPa 法向卸荷 τ=9.00 MPa 法向卸荷 τ=8.00 MPa 法向卸荷 τ=7.00 MPa 法向卸荷 τ=6.00 MPa
    初始试样 破坏时应力 σ=6.00 MPa,τ=12.40 MPa σ=2.30 MPa,τ=9.00 MPa σ=1.90 MPa,τ=8.00 MPa σ=1.30 MPa,τ=7.00 MPa σ=0.80 MPa,τ=6.00 MPa
    破坏模式
    素描图
    浸泡80 d 破坏时应力 σ=6.00 MPa,τ=10.16 MPa σ=5.34 MPa,τ=9.00 MPa σ=3.12 MPa,τ=8.00 MPa σ=2.47 MPa,τ=7.00 MPa σ=1.84 MPa,τ=6.00 MPa
    破坏模式
    素描图
    下载: 导出CSV

    表 6  反应方程

    Table 6.  Reaction equation

    矿物名称 反应方程式
    碳酸盐岩矿物 CaCO3+CO2+H2O=Ca2++2${\mathrm{HCO}}_3^- $
    白云石 CaMg(CO3)2+4H+=Ca2++Mg2++2H2O+2CO2
    钾长石 KAlSi3O8+8H2O=K++${\mathrm{Al}}({\mathrm{OH}})_4^- $+3H4SiO4
    钠长石 NaAlSi3O8+8H2O=Na++${\mathrm{Al}}({\mathrm{OH}})_4^- $+3H4SiO4
    下载: 导出CSV
  • [1]

    SUN Shaorui,LI Kai,LE Huilin,et al. Study on the deterioration characteristics of greenschist under hydrochemical action and the disaster-causing mechanism in slope[J]. Bulletin of Engineering Geology and the Environment,2022,81(8):315. doi: 10.1007/s10064-022-02819-4

    [2]

    齐豫. 水-岩作用下节理岩体剪切力学特性劣化效应及机理[D]. 宜昌:三峡大学,2021. [QI Yu. Deterioration effect and mechanism of shear mechanical properties of jointed rock mass under water-rock interaction[D]. Yichang:China Three Gorges University,2021. (in Chinese with English abstract)]

    QI Yu. Deterioration effect and mechanism of shear mechanical properties of jointed rock mass under water-rock interaction[D]. Yichang: China Three Gorges University, 2021. (in Chinese with English abstract)

    [3]

    骆韬,郭保华,焦峰,等. 水化学作用对砂岩力学性质影响试验研究[J]. 地下空间与工程学报,2019,15(5):1316 − 1322. [LUO Tao,GUO Baohua,JIAO Feng,et al. The influence of hydrochemical erosion on the mechanical characteristics of sandstone[J]. Chinese Journal of Underground Space and Engineering,2019,15(5):1316 − 1322. (in Chinese with English abstract)]

    LUO Tao, GUO Baohua, JIAO Feng, et al. The influence of hydrochemical erosion on the mechanical characteristics of sandstone[J]. Chinese Journal of Underground Space and Engineering, 2019, 155): 13161322. (in Chinese with English abstract)

    [4]

    WANG Weinan,YAO Qiangling,TANG Chuanjin,et al. Experimental study on the shear characteristics and weakening mechanism of water-bearing rock joints[J]. Bulletin of Engineering Geology and the Environment,2021,80(10):7653 − 7668. doi: 10.1007/s10064-021-02390-4

    [5]

    郑东普,李克钢,吴勇. 含水状态对白云岩剪切特性影响规律的试验研究[J]. 矿业研究与开发,2013,33(4):20 − 23. [ZHENG Dongpu,LI Kegang,WU Yong. Experimental study on influence of moisture content on shear property of dolomite[J]. Mining Research and Development,2013,33(4):20 − 23. (in Chinese with English abstract)]

    ZHENG Dongpu, LI Kegang, WU Yong. Experimental study on influence of moisture content on shear property of dolomite[J]. Mining Research and Development, 2013, 334): 2023. (in Chinese with English abstract)

    [6]

    常五岳. 易崩解红砂岩在不同含水率下的剪切性质分析[D]. 兰州:兰州大学,2022. [CHANG Wuyue. Analysis of shear properties of collspsible red sandstone under different water content[D]. Lanzhou:Lanzhou University,2022. (in Chinese with English abstract)]

    CHANG Wuyue. Analysis of shear properties of collspsible red sandstone under different water content[D]. Lanzhou: Lanzhou University, 2022. (in Chinese with English abstract)

    [7]

    李鹏,刘建,李国和,等. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学,2011,32(2):380 − 386. [LI Peng,LIU Jian,LI Guohe,et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics,2011,32(2):380 − 386. (in Chinese with English abstract)]

    LI Peng, LIU Jian, LI Guohe, et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Soil Mechanics, 2011, 322): 380386. (in Chinese with English abstract)

    [8]

    周罕,曹平,张科. 昔格达组黏土岩和粉砂岩现场直剪试验研究[J]. 中南大学学报(自然科学版),2014,45(10):3544 − 3550. [ZHOU Han,CAO Ping,ZHANG Ke. In-situ direct shear test on Xigeda Formation clay stone and siltstone[J]. Journal of Central South University (Science and Technology),2014,45(10):3544 − 3550. (in Chinese with English abstract)]

    ZHOU Han, CAO Ping, ZHANG Ke. In-situ direct shear test on Xigeda Formation clay stone and siltstone[J]. Journal of Central South University (Science and Technology), 2014, 4510): 35443550. (in Chinese with English abstract)

    [9]

    赵志宏. 岩石裂隙水-岩作用机制与力学行为研究[J]. 岩石力学与工程学报,2021,40(增刊2):3063 − 3073. [ZHAO Zhihong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 2):3063 − 3073. (in Chinese with English abstract)]

    ZHAO Zhihong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3063 − 3073. (in Chinese with English abstract)

    [10]

    邓华锋,齐豫,李建林,等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报,2021,43(4):634 − 643. [DENG Huafeng,QI Yu,LI Jianlin,et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):634 − 643. (in Chinese with English abstract)]

    DENG Huafeng, QI Yu, LI Jianlin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 434): 634643. (in Chinese with English abstract)

    [11]

    王艳磊,唐建新,江君,等. 水-岩化学作用下灰砂岩的力学特性与参数损伤效应[J]. 煤炭学报,2017,42(1):227 − 235. [WANG Yanlei,TANG Jianxin,JIANG Jun,et al. Mechanical properties and parameter damage effect of malmstone under chemical corrosion of water-rock interaction[J]. Journal of China Coal Society,2017,42(1):227 − 235. (in Chinese with English abstract)]

    WANG Yanlei, TANG Jianxin, JIANG Jun, et al. Mechanical properties and parameter damage effect of malmstone under chemical corrosion of water-rock interaction[J]. Journal of China Coal Society, 2017, 421): 227235. (in Chinese with English abstract)

    [12]

    陈小川,郭杨,张振华,等. 干湿循环作用下老黏土抗剪强度劣化试验研究[J]. 水利水电技术(中英文),2022,53(8):172 − 179. [CHEN Xiaochuan,GUO Yang,ZHANG Zhenhua,et al. Experimental study on shear strength deterioration of old clay under dry-wet cycle[J]. Water Resources and Hydropower Engineering,2022,53(8):172 − 179. (in Chinese)]

    CHEN Xiaochuan, GUO Yang, ZHANG Zhenhua, et al. Experimental study on shear strength deterioration of old clay under dry-wet cycle[J]. Water Resources and Hydropower Engineering, 2022, 538): 172179. (in Chinese)

    [13]

    周翠英,李伟科,向中明,等. 水-应力作用下软岩细观结构摩擦接触分析[J]. 岩土力学,2015,36(9):2458 − 2466. [ZHOU Cuiying,LI Weike,XIANG Zhongming,et al. Analysis of mesoscopic frictional contacts in soft rocks under water-stress interaction[J]. Rock and Soil Mechanics,2015,36(9):2458 − 2466. (in Chinese with English abstract)]

    ZHOU Cuiying, LI Weike, XIANG Zhongming, et al. Analysis of mesoscopic frictional contacts in soft rocks under water-stress interaction[J]. Rock and Soil Mechanics, 2015, 369): 24582466. (in Chinese with English abstract)

    [14]

    NOUAILLETAS O,PERLOT C,RIVARD P,et al. Impact of acid attack on the shear behaviour of a carbonate rock joint[J]. Rock Mechanics and Rock Engineering,2017,50(6):1439 − 1451. doi: 10.1007/s00603-017-1182-6

    [15]

    李远耀. 三峡库首区顺层基岩岸坡变形机制与稳定性研究[D]. 武汉:中国地质大学,2007. [LI Yuanyao. Study on deformation mechanism and stability of bedding foundation rock bank slope in the head area of Three Gorges Reservoir[D]. Wuhan:China University of Geosciences,2007. (in Chinese with English abstract)]

    LI Yuanyao. Study on deformation mechanism and stability of bedding foundation rock bank slope in the head area of Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2007. (in Chinese with English abstract)

    [16]

    周剑,邓茂林,李卓骏,等. 三峡库区浮托减重型滑坡对库水升降的响应规律[J]. 水文地质工程地质,2019,46(5):136 − 143. [ZHOU Jian,DENG Maolin,LI Zhuojun,et al. Response patterns of buoyancy weight loss landslides under reservoir water level fluctuation in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology,2019,46(5):136 − 143. (in Chinese with English abstract)]

    ZHOU Jian, DENG Maolin, LI Zhuojun, et al. Response patterns of buoyancy weight loss landslides under reservoir water level fluctuation in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2019, 465): 136143. (in Chinese with English abstract)

    [17]

    朱冬雪,许强,李松林. 三峡库区大型-特大型层状岩质滑坡成因模式及地质特征分析[J]. 地质科技通报,2020,39(2):158 − 167. [ZHU Dongxue,XU Qiang,LI Songlin. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology,2020,39(2):158 − 167. (in Chinese with English abstract)]

    ZHU Dongxue, XU Qiang, LI Songlin. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 392): 158167. (in Chinese with English abstract)

    [18]

    喻章. 杉树槽滑坡滑带土强度衰减特性及失稳机理研究[D]. 武汉:中国地质大学,2018. [YU Zhang. Study on strength attenuation characteristics of slip soil failure mechanism of Shanshucao landslide[D]. Wuhan:China University of Geosciences,2018. (in Chinese with English abstract)]

    YU Zhang. Study on strength attenuation characteristics of slip soil failure mechanism of Shanshucao landslide[D]. Wuhan: China University of Geosciences, 2018. (in Chinese with English abstract)

    [19]

    彭轩明,贾永刚,常宏. 长江三峡工程库区龙王庙滑坡群稳定性分析及整治[J]. 中国海洋大学学报(自然科学版),2004,34(2):289 − 296. [PENG Xuanming,JIA Yonggang,CHANG Hong. Stability analysis and control of Longwangmiao landslides in the Three Gorges Reservoir area[J]. Journal of Ocean University of Qingdao,2004,34(2):289 − 296. (in Chinese with English abstract)]

    PENG Xuanming, JIA Yonggang, CHANG Hong. Stability analysis and control of Longwangmiao landslides in the Three Gorges Reservoir area[J]. Journal of Ocean University of Qingdao, 2004, 342): 289296. (in Chinese with English abstract)

    [20]

    赵丹旗,付昱凯,侯晓坤,等. 不同应力路径下饱和重塑黄土的力学特性[J]. 水文地质工程地质,2022,49(6):74 − 80. [ZHAO Danqi,FU Yukai,HOU Xiaokun,et al. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology,2022,49(6):74 − 80. (in Chinese with English abstract)]

    ZHAO Danqi, FU Yukai, HOU Xiaokun, et al. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology, 2022, 496): 7480. (in Chinese with English abstract)

    [21]

    杨超,蒋淏南,岳六一,等. 法向卸荷条件下非贯通节理岩体剪切力学特性试验研究[J]. 岩土工程学报,2022,44(9):1741 − 1750. [YANG Chao,JIANG Haonan,YUE Liuyi,et al. Shear mechanical properties of rock mass with discontinuous joints under unloading normal stress[J]. Chinese Journal of Geotechnical Engineering,2022,44(9):1741 − 1750. (in Chinese with English abstract)]

    YANG Chao, JIANG Haonan, YUE Liuyi, et al. Shear mechanical properties of rock mass with discontinuous joints under unloading normal stress[J]. Chinese Journal of Geotechnical Engineering, 2022, 449): 17411750. (in Chinese with English abstract)

    [22]

    中华人民共和国水利部. 水利水电工程岩石试验规程:SL/T 264—2020[S]. 北京:中国水利水电出版社,2020. [Ministry of Water Resources of the People’s Republic of China. Code for rock tests in water and hydropower projects:SL/T 264—2020[S]. Beijing:China Water & Power Press,2020. (in Chinese)]

    Ministry of Water Resources of the People’s Republic of China. Code for rock tests in water and hydropower projects: SL/T 264—2020[S]. Beijing: China Water & Power Press, 2020. (in Chinese)

    [23]

    宛良朋,许阳,李建林,等. 岩体参数敏感性分析对边坡稳定性评价影响研究——以大岗山坝肩边坡为例[J]. 岩土力学,2016,37(6):1737 − 1744. [WAN Liangpeng,XU Yang,LI Jianlin,et al. Sensitivity analysis of the effect of rock mass parameters on slope stability evaluation:A case study of abutment slope of Dagangshan[J]. Rock and Soil Mechanics,2016,37(6):1737 − 1744. (in Chinese with English abstract)]

    WAN Liangpeng, XU Yang, LI Jianlin, et al. Sensitivity analysis of the effect of rock mass parameters on slope stability evaluation: A case study of abutment slope of Dagangshan[J]. Rock and Soil Mechanics, 2016, 376): 17371744. (in Chinese with English abstract)

    [24]

    赵建军,解明礼,李涛,等. 饱水条件下千枚岩软化效应试验分析[J]. 工程地质学报,2017,25(6):1449 − 1454. [ZHAO Jianjun,XIE Mingli,LI Tao,et al. Softening effect of phyllite with water saturation[J]. Journal of Engineering Geology,2017,25(6):1449 − 1454. (in Chinese with English abstract)]

    ZHAO Jianjun, XIE Mingli, LI Tao, et al. Softening effect of phyllite with water saturation[J]. Journal of Engineering Geology, 2017, 256): 14491454. (in Chinese with English abstract)

    [25]

    魏长茂. 静态化学溶蚀作用下白云岩力学特性劣化机制研究[D]. 西安:长安大学,2022. [WEI Changmao. Study on deterioration mechanism of mechanical properties of dolomite under static chemical dissolution[D]. Xi’an:Chang’an University,2022. (in Chinese with English abstract)]

    WEI Changmao. Study on deterioration mechanism of mechanical properties of dolomite under static chemical dissolution[D]. Xi’an: Chang’an University, 2022. (in Chinese with English abstract)

    [26]

    陈绪新,付厚利,秦哲,等. 不同饱水条件下蚀变岩边坡稳定性分析[J]. 地质与勘探,2017,53(1):151 − 156. [CHEN Xuxin,FU Houli,QIN Zhe,et al. Slope stability analysis of altered rocks under different saturated conditions[J]. Geology and Exploration,2017,53(1):151 − 156. (in Chinese with English abstract)]

    CHEN Xuxin, FU Houli, QIN Zhe, et al. Slope stability analysis of altered rocks under different saturated conditions[J]. Geology and Exploration, 2017, 531): 151156. (in Chinese with English abstract)

    [27]

    许江,吴慧,程立朝,等. 酸性条件下砂岩剪切破坏特性试验研究[J]. 岩石力学与工程学报,2012,31(增刊2):3897 − 3903. [XU Jiang,WU Hui,CHENG Lichao,et al. Experimental study of shearing failure properties of sandstone under acidic conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(Sup 2):3897 − 3903. (in Chinese with English abstract)]

    XU Jiang, WU Hui, CHENG Lichao, et al. Experimental study of shearing failure properties of sandstone under acidic conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup 2): 3897 − 3903. (in Chinese with English abstract)

    [28]

    韩铁林,陈蕴生,师俊平,等. 水化学腐蚀对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报,2013,32(增刊2):3064 − 3072. [HAN Tielin,CHEN Yunsheng,SHI Junping,et al. Experimental study of mechanical characteristics of sandstone subjected to hydrochemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup 2):3064 − 3072. (in Chinese with English abstract)]

    HAN Tielin, CHEN Yunsheng, SHI Junping, et al. Experimental study of mechanical characteristics of sandstone subjected to hydrochemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Sup 2): 3064 − 3072. (in Chinese with English abstract)

    [29]

    SUN Qiancheng,WEI Can,SHA Ximan,et al. Study on the influence of water-rock interaction on the stability of schist slope[J]. Sustainability,2020,12(17):7141. doi: 10.3390/su12177141

    [30]

    姚海林,刘少军,程昌炳. 一种天然胶结土粘聚力的微观本质[J]. 岩石力学与工程学报,2001,20(6):871 − 874. [YAO Hailin,LIU Shaojun,CHENG Changbing. Scopic essence of cohesion of a natural cemented soil[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(6):871 − 874. (in Chinese with English abstract)]

    YAO Hailin, LIU Shaojun, CHENG Changbing. Scopic essence of cohesion of a natural cemented soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 206): 871874. (in Chinese with English abstract)

    [31]

    王星辰,王志亮,黄佑鹏,等. 预制裂隙岩样宏细观力学行为颗粒流数值模拟[J]. 水文地质工程地质,2021,48(4):86 − 92. [WANG Xingchen,WANG Zhiliang,HUANG Youpeng,et al. Particle flow simulation of macro-and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology,2021,48(4):86 − 92. (in Chinese with English abstract)]

    WANG Xingchen, WANG Zhiliang, HUANG Youpeng, et al. Particle flow simulation of macro-and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology, 2021, 484): 8692. (in Chinese with English abstract)

    [32]

    孙其诚,王光谦. 颗粒物质力学导论[M]. 北京:科学出版社,2009. [SUN Qicheng,WANG Guangqian. Introduction to granular material mechanics[M]. Beijing:Science Press,2009. (in Chinese)]

    SUN Qicheng, WANG Guangqian. Introduction to granular material mechanics[M]. Beijing: Science Press, 2009. (in Chinese)

  • 加载中

(14)

(6)

计量
  • 文章访问数:  1217
  • PDF下载数:  113
  • 施引文献:  0
出版历程
收稿日期:  2023-03-28
修回日期:  2023-07-11
刊出日期:  2024-03-15

目录