泾阳浅层黄土细微观孔隙结构试验

冯笑瑞, 朱兴华, 孙恒飞, 俱量, 温瑞祥, 肖永玖. 泾阳浅层黄土细微观孔隙结构试验[J]. 水文地质工程地质, 2024, 51(6): 138-148. doi: 10.16030/j.cnki.issn.1000-3665.202305008
引用本文: 冯笑瑞, 朱兴华, 孙恒飞, 俱量, 温瑞祥, 肖永玖. 泾阳浅层黄土细微观孔隙结构试验[J]. 水文地质工程地质, 2024, 51(6): 138-148. doi: 10.16030/j.cnki.issn.1000-3665.202305008
FENG Xiaorui, ZHU Xinghua, SUN Hengfei, JU Liang, WEN Ruixiang, XIAO Yongjiu. Meso and micro pore structure test of Jingyang shallow loess[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 138-148. doi: 10.16030/j.cnki.issn.1000-3665.202305008
Citation: FENG Xiaorui, ZHU Xinghua, SUN Hengfei, JU Liang, WEN Ruixiang, XIAO Yongjiu. Meso and micro pore structure test of Jingyang shallow loess[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 138-148. doi: 10.16030/j.cnki.issn.1000-3665.202305008

泾阳浅层黄土细微观孔隙结构试验

  • 基金项目: 国家自然科学基金基项目(442090053;42041006;41877249)
详细信息
    作者简介: 冯笑瑞(2000—),女,硕士研究生,主要从事黄土渗流及其致灾效应方面的工作。E-mail:15248416209@163.com
    通讯作者: 朱兴华(1984—),男,博士,教授,硕士生导师,主要从事地质灾害防治方面的科研与教学工作。E-mail:zhuxinghua@chd.edu.cn
  • 中图分类号: P642.2

Meso and micro pore structure test of Jingyang shallow loess

More Information
  • 降雨与灌溉是黄土地区最常见的地灾驱动力。通常情况下,入渗深度较浅且主要受细微观通道的控制,孔隙结构对渗流特性的影响十分显著。为了研究浅层黄土孔隙结构分布规律,以泾阳南塬黄土为研究对象,采用CT断层扫描法和压汞法分析黄土结构,观察并讨论细微观孔隙结构特性随黄土埋深的变化规律。研究表明:①泾阳浅层黄土根据其孔隙结构特征可划分为三层,1~2 m为第一层,3~4 m为第二层,5 m为第三层;②孔径小于1.0 mm的孔隙占总孔隙数量的95%以上,以类球状和柱状的封闭孔隙为主;③孔径大于0.8 mm的孔隙占总孔隙体积的65%以上,多为枝杈状和柱状的连通孔隙;④随着埋深的增加,连通性逐渐降低,大孔隙的变形破坏对黄土结构的稳定起着关键作用;⑤根据压汞试验可知,集粒内孔隙以0.2 μm为界,随着埋深的增加左侧孔隙占比无明显变化,右侧随之增大。研究成果可为进一步探索浅表层黄土细微观孔隙渗流机制提供参考。

  • 加载中
  • 图 1  泾阳不同深度黄土粒径分布占比图

    Figure 1. 

    图 2  CT图像处理流程图

    Figure 2. 

    图 3  孔隙密度分布曲线

    Figure 3. 

    图 4  二维层面不同埋深孔隙大小分布

    Figure 4. 

    图 5  浅层黄土三维孔隙网络

    Figure 5. 

    图 6  黄土中的孔隙

    Figure 6. 

    图 7  不同深度黄土的孔径分布图与大孔隙空间分布图

    Figure 7. 

    图 8  不同孔径区间内孔隙数量与体积分布

    Figure 8. 

    图 9  基于三维形状因子的黄土孔隙分类

    Figure 9. 

    表 1  泾阳不同深度黄土基本物理参数表

    Table 1.  Basic physical parameters of Jingyang loess at different depths

    埋深/m 天然密度
    /(g·cm−3
    含水率
    /%
    干密度
    /(g·cm−3
    比重 孔隙结构
    孔隙比 孔隙率
    1 1.43 15.97 1.23 2.68 1.180 0.54
    2 1.50 19.34 1.26 2.69 1.135 0.53
    3 1.52 20.80 1.26 2.68 1.130 0.53
    4 1.58 22.54 1.29 2.70 1.090 0.52
    5 1.58 20.25 1.31 2.70 1.060 0.51
    下载: 导出CSV

    表 2  不同深度黄土微观孔隙尺度分布

    Table 2.  Distribution of micro-pore size of loess at different depths

    深度/m 孔隙尺度分布
    微孔隙/% 小孔隙/% 中孔隙/% 大孔隙/%
    1 36.80 17.66 28.03 17.50
    2 26.63 37.28 23.47 12.61
    3 28.52 51.96 17.02 2.50
    4 31.43 37.25 27.90 3.42
    5 77.84 14.43 5.72 2.01
    下载: 导出CSV

    表 3  细观孔隙结构定量分析参数

    Table 3.  Quantitative analysis parameter of mesoscopic pore structure

    参数名称 符号 定义 公式 作用
    孔隙度 $ {n}_{3\mathrm{D}} $ 土体中孔隙体积所占总体积的百分比 $ n_{3\mathrm{D}}=\dfrac{V_{\mathrm{V}}}{V_{\mathrm{T}}} $
    $ {V}_{\mathrm{V}} $——孔隙体积/μm³;
    $ {V}_{\mathrm{T}} $——土壤总体积/μm³
    反映土体的连通程度
    连通孔隙度 $ {n}_{\mathrm{e}} $ 土体中连通孔隙(本研究中,认为有公共面接触的
    孔隙才视为连通孔隙)体积所占总体积的百分比
    $ {n}_{\mathrm{e}}=\dfrac{{V}_{\mathrm{c}}}{{V}_{\mathrm{T}}} $
    $ {V}_{\mathrm{c}} $——连通孔隙体积/ μm³;
    $ {V}_{\mathrm{T}} $——土壤总体积/ μm³
    反映土体的有效孔隙体积占比
    孔隙体积 $ {V}_{3\mathrm{D}} $ 孔隙的总体积 $ V_{3\mathrm{D}}=N\cdot V_0 $
    $ {V}_{0} $——最小体素单元的体积/μm³;
    N——三维孔隙所包含的体素单元数目
    反映孔隙的体积变化
    等效直径 $ {d}_{3\mathrm{D}} $ 在构建三维孔隙结构时,采用形态模型的方法[25],即
    认为孔隙空间是不同直径的重叠球体的集合,
    孔隙直径是包含该孔隙体率的最大球体的直径
    $ d_{3\mathrm{D}}=\sqrt[3]{\dfrac{6\cdot V_{3\mathrm{D}}}{\text{π}}} $
    $ \mathrm{\mathit{V}}_{3\mathrm{D}} $——孔隙体积/μm³
    表示孔隙直径的参数
    配位数 $ {C}_{\mathrm{n}} $ 每个孔道所连通的喉道个数[26] $ C_{\mathrm{n}}=\dfrac{2\cdot N_{\mathrm{\mathit{\mathrm{B}}}}-N_{\mathrm{\mathit{\mathrm{E}}}}}{N_{\mathrm{\mathit{\mathrm{J}}}}} $
    $ {N}_{\mathrm{B}} $——支点所连分支孔隙数量;
    $ {N}_{\mathrm{E}} $——端点孔隙数量;
    $ {N}_{\mathrm{J}} $——节点数
    反映孔隙连通性的指标
    形状因子 $ {S} _{3\mathrm{D}} $ 孔隙空间的形状是非常复杂的,所以在网络模型中,
    以球体作为标准单元,采用等价的规则的几何形状
    近似描述
    $ S _{3\mathrm{D}}=\dfrac{A_{3\mathrm{D}}^3}{36\mathrm{\text{π}}V_{3\mathrm{D}}^2} $
    $ {A}_{3\mathrm{D}} $——三维孔隙表面积/μm2
    $ {V}_{3\mathrm{D}} $——孔隙体积/μm³
    反映孔隙形状,定量表征孔隙形状偏离球体的程度
    下载: 导出CSV

    表 4  不同深度土样孔隙的基本几何参数

    Table 4.  Basic geometric parameters of pores in the soil samples at different depths

    土样 孔隙度 连通
    孔隙度
    平均直径
    /mm
    最小直径
    /mm
    最大直径
    /mm
    孔隙连通度
    /%
    JY-1 0.16 0.15 0.495 0.124 4.321 91.69
    JY-2 0.09 0.08 0.513 0.124 2.733 83.06
    JY-3 0.07 0.05 0.524 0.124 3.427 74.87
    JY-4 0.03 0.01 0.531 0.124 4.559 43.06
    JY-5 0.03 0.02 0.523 0.124 4.002 50.22
    下载: 导出CSV

    表 5  基于不同形状因子的孔隙分类表

    Table 5.  Pore classification based on different shape factors

    形状
    因子
    孔隙
    类型
    试样
    埋深/m
    数量比
    /%
    体积
    占比/%
    孔径范围
    /μm
    <2.5 类球状 1 74.76 20.71 124~2848
    2 82.79 27.19 124~2027
    3 84.27 28.01 124~3298
    4 89.34 24.73 124~2371
    5 84.67 24.60 124~3231
    2.5~6 柱状 1 19.19 40.30 336~2308
    2 13.87 42.55 389~1966
    3 12.23 40.35 347~2812
    4 8.09 32.98 331~2406
    5 11.08 29.45 325~3666
    >6 枝杈状 1 6.05 38.99 566~23838
    2 3.34 30.26 570~2733
    3 3.51 31.64 520~2987
    4 2.47 42.28 530~4549
    5 4.25 45.95 583~4002
    下载: 导出CSV

    表 6  细微观孔隙尺度划分表

    Table 6.  Scale division of Fine and Micro Pores

    微观孔隙/μm 细观孔隙/μm
    微孔隙 小孔隙 中孔隙 大孔隙
    <2 [2, 8) [8, 32) [32, 100) ≥100
    下载: 导出CSV
  • [1]

    彭建兵,林鸿州,王启耀,等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报,2014,22(4):684 − 691. [PENG Jianbing,LIN Hungchou,WANG Qiyao,et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology,2014,22(4):684 − 691. (in Chinese with English abstract)]

    PENG Jianbing, LIN Hungchou, WANG Qiyao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684 − 691. (in Chinese with English abstract)

    [2]

    赵志强,戴福初,闵弘,等. 黄土中灌溉水入渗过程的现场试验研究[J]. 岩土工程学报,2022,44(3):569 − 575. [ZHAO Zhiqiang,DAI Fuchu,MIN Hong,et al. Field tests on irrigation infiltration in thick loess[J]. Chinese Journal of Geotechnical Engineering,2022,44(3):569 − 575. (in Chinese with English abstract)]

    ZHAO Zhiqiang, DAI Fuchu, MIN Hong, et al. Field tests on irrigation infiltration in thick loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 569 − 575. (in Chinese with English abstract)

    [3]

    许领,戴福初,闵弘,等. 泾阳南塬黄土滑坡类型与发育特征[J]. 地球科学,2010,35(1):155 − 160. [XU Ling,DAI Fuchu,MIN Hong,et al. Loess landslide types and topographic features at South Jingyang Plateau,China[J]. Earth Science,2010,35(1):155 − 160. (in Chinese with English abstract)]

    XU Ling, DAI Fuchu, MIN Hong, et al. Loess landslide types and topographic features at South Jingyang Plateau, China[J]. Earth Science, 2010, 35(1): 155 − 160. (in Chinese with English abstract)

    [4]

    朱才辉,李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报,2020,42(5):845 − 854. [ZHU Caihui,LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering,2020,42(5):845 − 854. (in Chinese with English abstract)]

    ZHU Caihui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845 − 854. (in Chinese with English abstract)

    [5]

    许强,亓星,修德皓,等. 突发型黄土滑坡的临界水位研究——以甘肃黑方台黄土滑坡为例[J]. 水利学报,2019,50(3):315 − 322. [XU Qiang,QI Xing,XIU Dehao,et al. Critical water level of abrupt loess landslides:A case study in Heifangtai,Gansu Province[J]. Journal of Hydraulic Engineering,2019,50(3):315 − 322. (in Chinese with English abstract)]

    XU Qiang, QI Xing, XIU Dehao, et al. Critical water level of abrupt loess landslides: A case study in Heifangtai, Gansu Province[J]. Journal of Hydraulic Engineering, 2019, 50(3): 315 − 322. (in Chinese with English abstract)

    [6]

    牛兵. 泾阳南塬灌溉诱发黄土滑坡机理[D]. 西安:西安科技大学,2020. [NIU Bing. Mechanism of irrigation-induced loess landslide at South Jingyang Plateau[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)]

    NIU Bing. Mechanism of irrigation-induced loess landslide at South Jingyang Plateau[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)

    [7]

    郭晨,许强,魏勇,等. 陕西泾阳南塬多序次黄土滑坡演化特征及成灾模式[J]. 地质科技情报,2019,38(5):204 − 211. [GUO Chen,XU Qiang,WEI Yong,et al. Evolution characteristics and disaster modes of repeatedly failure loess landslides in southern Jingyang Plateau,Shaanxi Province[J]. Geological Science and Technology Information,2019,38(5):204 − 211. (in Chinese with English abstract)]

    GUO Chen, XU Qiang, WEI Yong, et al. Evolution characteristics and disaster modes of repeatedly failure loess landslides in southern Jingyang Plateau, Shaanxi Province[J]. Geological Science and Technology Information, 2019, 38(5): 204 − 211. (in Chinese with English abstract)

    [8]

    马鹏辉,彭建兵,李同录,等. 陕西泾阳“3•8”蒋刘黄土滑坡成因及运动特征分析[J]. 工程地质学报,2018,26(3):663 − 672. [MA Penghui,PENG Jianbing,LI Tonglu,et al. Forming mechanism and motion characteristics of the “3•8” jiangliu loess landslide in Jingyang County of Shaanxi Province[J]. Journal of Engineering Geology,2018,26(3):663 − 672. (in Chinese with English abstract)]

    MA Penghui, PENG Jianbing, LI Tonglu, et al. Forming mechanism and motion characteristics of the “3•8” jiangliu loess landslide in Jingyang County of Shaanxi Province[J]. Journal of Engineering Geology, 2018, 26(3): 663 − 672. (in Chinese with English abstract)

    [9]

    卢盛栋,李强,李芬,等. 大气降水诱发黄土高原滑坡灾害阈值及灾损研究[J]. 灾害学,2023,38(3):53 − 59. [LU Shengdong,LI Qiang,LI Fen,et al. Study on threshold and damage of landslide disaster induced by atmospheric precipitation in loess plateau[J]. Journal of Catastrophology,2023,38(3):53 − 59. (in Chinese with English abstract)]

    LU Shengdong, LI Qiang, LI Fen, et al. Study on threshold and damage of landslide disaster induced by atmospheric precipitation in loess plateau[J]. Journal of Catastrophology, 2023, 38(3): 53 − 59. (in Chinese with English abstract)

    [10]

    陈洪凯,魏来,谭玲. 降雨型滑坡经验性降雨阈值研究综述[J]. 重庆交通大学学报(自然科学版),2012,31(5):990 − 996. [CHEN Hongkai,WEI Lai,TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science),2012,31(5):990 − 996. (in Chinese with English abstract)]

    CHEN Hongkai, WEI Lai, TAN Ling. Review of research on empirical rainfall threshold of rainfall-induced landslide[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5): 990 − 996. (in Chinese with English abstract)

    [11]

    彭建兵,吴迪,段钊,等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报,2016,51(5):971 − 980. [PENG Jianbing,WU Di,DUAN Zhao,et al. Disaster characteristics and destructive mechanism of typical loess landslide cases triggered by human engineering activities[J]. Journal of Southwest Jiaotong University,2016,51(5):971 − 980. (in Chinese with English abstract)]

    PENG Jianbing, WU Di, DUAN Zhao, et al. Disaster characteristics and destructive mechanism of typical loess landslide cases triggered by human engineering activities[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 971 − 980. (in Chinese with English abstract)

    [12]

    安鹏,张爱军,邢义川,等. 伊犁深厚湿陷性黄土浸水入渗及沉降变形特征分析[J]. 岩土力学,2017,38(2):557 − 564. [AN Peng,ZHANG Aijun,XING Yichuan,et al. Analysis of soak infiltration and deformation characteristics for thick collapsible loess in Ili region[J]. Rock and Soil Mechanics,2017,38(2):557 − 564. (in Chinese with English abstract)]

    AN Peng, ZHANG Aijun, XING Yichuan, et al. Analysis of soak infiltration and deformation characteristics for thick collapsible loess in Ili region[J]. Rock and Soil Mechanics, 2017, 38(2): 557 − 564. (in Chinese with English abstract)

    [13]

    黄雪峰,张广平,姚志华,等. 大厚度自重湿陷性黄土湿陷变形特性水分入渗规律及地基处理方法研究[J]. 岩土力学,2011,32(增刊2):100 − 108. [HUANG Xuefeng,ZHANG Guangping,YAO Zhihua,et al. Research on deformation,permeability regularity and foundation treatment method of dead-weight collapse loess with heavy section[J]. Rock and Soil Mechanics,2011,32(Sup 2):100 − 108. (in Chinese with English abstract)]

    HUANG Xuefeng, ZHANG Guangping, YAO Zhihua, et al. Research on deformation, permeability regularity and foundation treatment method of dead-weight collapse loess with heavy section[J]. Rock and Soil Mechanics, 2011, 32(Sup 2): 100 − 108. (in Chinese with English abstract)

    [14]

    任晓虎,许强,赵宽耀,等. 反复入渗对重塑黄土渗透特性的影响[J]. 地质科技通报,2020,39(2):130 − 138. [REN Xiaohu,XU Qiang,ZHAO Kuanyao,et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology,2020,39(2):130 − 138. (in Chinese with English abstract)]

    REN Xiaohu, XU Qiang, ZHAO Kuanyao, et al. Effect of repeated infiltration on permeability characteristics of remolded loess[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 130 − 138. (in Chinese with English abstract)

    [15]

    王力,李喜安,赵宁,等. 黏粒含量对黄土物理力学性质的影响[J]. 中国地质灾害与防治学报,2018,29(3):133 − 143. [WANG Li,LI Xi’an,ZHAO Ning,et al. Effect of clay content on physical and mechanical properties of loess soils[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):133 − 143. (in Chinese with English abstract)]

    WANG Li, LI Xi’an, ZHAO Ning, et al. Effect of clay content on physical and mechanical properties of loess soils[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 133 − 143. (in Chinese with English abstract)

    [16]

    邹锡云,许强,赵宽耀,等. 浸水作用下黑方台黄土渗透特性变化微观研究[J]. 人民长江,2020,51(6):166 − 171. [ZOU Xiyun,XU Qiang,ZHAO Kuanyao,et al. Microscopic study on permeability change of loess in Heifangtai Terrace under soaking[J]. Yangtze River,2020,51(6):166 − 171. (in Chinese with English abstract)]

    ZOU Xiyun, XU Qiang, ZHAO Kuanyao, et al. Microscopic study on permeability change of loess in Heifangtai Terrace under soaking[J]. Yangtze River, 2020, 51(6): 166 − 171. (in Chinese with English abstract)

    [17]

    杨博,张虎元,赵天宇,等. 改性黄土渗透性与孔隙结构的依存关系[J]. 水文地质工程地质,2011,38(6):96 − 101. [YANG Bo,ZHANG Huyuan,ZHAO Tianyu,et al. Responsibility of permeability of modified loess soil on microstructure[J]. Hydrogeology & Engineering Geology,2011,38(6):96 − 101. (in Chinese with English abstract)]

    YANG Bo, ZHANG Huyuan, ZHAO Tianyu, et al. Responsibility of permeability of modified loess soil on microstructure[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 96 − 101. (in Chinese with English abstract)

    [18]

    马巍,徐学祖,张立新. 冻融循环对石灰粉土剪切强度特性的影响[J]. 岩土工程学报,1999,21(2):158 − 160. [MA Wei,XU Xuezu,ZHANG Lixin. Influence of frost and thaw cycles on shear strength of lime silt[J]. Chinese Journal of Geotechnical Engineering,1999,21(2):158 − 160. (in Chinese with English abstract)]

    MA Wei, XU Xuezu, ZHANG Lixin. Influence of frost and thaw cycles on shear strength of lime silt[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 158 − 160. (in Chinese with English abstract)

    [19]

    肖东辉,冯文杰,张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土,2014,36(4):907 − 912. [XIAO Donghui,FENG Wenjie,ZHANG Ze. The changing rule of loess’ s porosity under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology,2014,36(4):907 − 912. (in Chinese with English abstract)]

    XIAO Donghui, FENG Wenjie, ZHANG Ze. The changing rule of loess’ s porosity under freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 907 − 912. (in Chinese with English abstract)

    [20]

    丁勇. 人工降雨模拟作用下的黄土高边坡稳定性研究[D]. 西安:西北大学,2011. [DING Yong. Study on the stability of high loess slope under artificial rainfall simulation[D]. Xi’an:Northwest University,2011. (in Chinese with English abstract)]

    DING Yong. Study on the stability of high loess slope under artificial rainfall simulation[D]. Xi’an: Northwest University, 2011. (in Chinese with English abstract)

    [21]

    张茂省,李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报,2011,19(4):530 − 540. [ZHANG Maosheng,LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology,2011,19(4):530 − 540. (in Chinese with English abstract)]

    ZHANG Maosheng, LI Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 2011, 19(4): 530 − 540. (in Chinese with English abstract)

    [22]

    李鑫. 基于CT的黄土微细观空隙结构及优先流特性研究[D]. 西安:长安大学,2020. [LI Xin. Research on micro and meso void structure and preferential flow characteristics of loess based on CT[D]. Xi’an:Chang’an University,2020. (in Chinese with English abstract)]

    LI Xin. Research on micro and meso void structure and preferential flow characteristics of loess based on CT[D]. Xi’an: Chang’an University, 2020. (in Chinese with English abstract)

    [23]

    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学 (B辑 化学 生物学 农学 医学 地学),1987,17(12):1309 − 1318. [LEI Xiangyi. Pore types and collapsibility of loess in China[J]. Science in China:SerB,1987,17(12):1309 − 1318. (in Chinese)]

    LEI Xiangyi. Pore types and collapsibility of loess in China[J]. Science in China: SerB, 1987, 17(12): 1309 − 1318. (in Chinese)

    [24]

    李华. 不同类型非饱和黄土持水及渗透特性研究[D]. 西安:长安大学,2020. [LI Hua. Water retention and permeability characteristics of different types of unsaturated loess[D]. Xi’an:Chang’an University,2020. (in Chinese with English abstract)]

    LI Hua. Water retention and permeability characteristics of different types of unsaturated loess[D]. Xi’an: Chang’an University, 2020. (in Chinese with English abstract)

    [25]

    HU Wulong,LIU Guofeng,ZHANG Xiaoxian. A pore-scale model for simulating water flow in unsaturated soil[J]. Microfluidics and Nanofluidics,2018,22(7):71. doi: 10.1007/s10404-018-2090-0

    [26]

    HAMAMOTO S,MOLDRUP P,KAWAMOTO K,et al. Pore network structure linked by X-ray CT to particle characteristics and transport parameters[J]. Soils and Foundations,2016,56(4):676 − 690. doi: 10.1016/j.sandf.2016.07.008

    [27]

    魏亚妮. 水作用下黄土三维微结构演化及湿陷机理研究[D]. 西安:长安大学,2019. [WEI Yani. Research on three-dimensional microstructure evolution during wetting and collapsible mechanism of loess[D]. Xi’an:Chang’an University,2019. (in Chinese with English abstract)]

    WEI Yani. Research on three-dimensional microstructure evolution during wetting and collapsible mechanism of loess[D]. Xi’an: Chang’an University, 2019. (in Chinese with English abstract)

    [28]

    PULIDO-MONCADA M,KATUWAL S,REN Lidong,et al. Impact of potential bio-subsoilers on pore network of a severely compacted subsoil[J]. Geoderma,2020,363:114154. doi: 10.1016/j.geoderma.2019.114154

    [29]

    LI Ping,VANAPALLI S,LI Tonglu. Review of collapse triggering mechanism of collapsible soils due to wetting[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(2):256 − 274. doi: 10.1016/j.jrmge.2015.12.002

    [30]

    蔡国庆,尤金宝,赵成刚,等. 双孔结构非饱和压实黏土的渗流-变形耦合微观机理[J]. 水利学报,2015,46(增刊1):135 − 141. [CAI Guoqing,YOU Jinbao,ZHAO Chenggang,et al. Microcosmic mechanism for flow-deformation coupling of unsaturated compacted clay with double porosity[J]. Journal of Hydraulic Engineering,2015,46(Sup 1):135 − 141. (in Chinese with English abstract)]

    CAI Guoqing, YOU Jinbao, ZHAO Chenggang, et al. Microcosmic mechanism for flow-deformation coupling of unsaturated compacted clay with double porosity[J]. Journal of Hydraulic Engineering, 2015, 46(Sup 1): 135 − 141. (in Chinese with English abstract)

  • 加载中

(9)

(6)

计量
  • 文章访问数:  45
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2023-05-04
修回日期:  2023-09-12
录用日期:  2023-09-13
刊出日期:  2024-11-15

目录