断裂构造中电阻率与声波波速特征分析及其在探测过程中的联合运用

高健, 潘剑伟, 詹林, 钱伦, 杨晨, 张成丽. 断裂构造中电阻率与声波波速特征分析及其在探测过程中的联合运用[J]. 水文地质工程地质, 2024, 51(2): 113-122. doi: 10.16030/j.cnki.issn.1000-3665.202306046
引用本文: 高健, 潘剑伟, 詹林, 钱伦, 杨晨, 张成丽. 断裂构造中电阻率与声波波速特征分析及其在探测过程中的联合运用[J]. 水文地质工程地质, 2024, 51(2): 113-122. doi: 10.16030/j.cnki.issn.1000-3665.202306046
GAO Jian, PAN Jianwei, ZHAN Lin, QIAN Lun, YANG Chen, ZHANG Chengli. Analysis of electrical resistivity and acoustic wave velocity characteristics in fault structures and their combined application in the detection process[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 113-122. doi: 10.16030/j.cnki.issn.1000-3665.202306046
Citation: GAO Jian, PAN Jianwei, ZHAN Lin, QIAN Lun, YANG Chen, ZHANG Chengli. Analysis of electrical resistivity and acoustic wave velocity characteristics in fault structures and their combined application in the detection process[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 113-122. doi: 10.16030/j.cnki.issn.1000-3665.202306046

断裂构造中电阻率与声波波速特征分析及其在探测过程中的联合运用

  • 基金项目: 贵州省科技计划项目([2020]1Y173);国家自然科学基金青年基金项目(42004122)
详细信息
    作者简介: 高健(1998—),男,硕士研究生,主要从事电磁法勘探研究。E-mail:2636486606@qq.com
    通讯作者: 潘剑伟(1988—),男,博士,副教授,主要从事电磁法勘探方面的教学和科研工作。E-mail:pjw1988@126.com
  • 中图分类号: P642.27

Analysis of electrical resistivity and acoustic wave velocity characteristics in fault structures and their combined application in the detection process

More Information
  • 查明断裂构造的具体位置对于工程场址的选择和稳定性评价具有重要意义。高密度电阻率法和声波测井是广泛运用于探测断裂构造的地球物理方法。高密度电阻率法具有对低阻体敏感且探测范围较大的特点,但高密度电阻率法的分辨率有限,难以准确圈定地质体的边界位置;声波测井具有准确识别地层的特点,但其横向探测范围非常有限。为了克服上述问题,结合2种方法在断裂构造探测中各自的优势以提高圈定地质体的精度,文章首先通过物性试验证明岩石破裂前后电阻率与声波波速变化的相关性,随后用一实例分析断裂构造的电阻率与声波波速特征以及两者在探测过程中的联合运用,最后借助声波测井数据对高密度电阻率法反演结果进行深度校正,得到断裂构造在地下空间的三维分布位置。结果表明:岩石破裂后的电阻率与声波波速较未破裂前均偏低;断裂构造的破碎带在高密度电阻率法反演剖面上以低阻异常区域存在,在声波波速曲线上破碎带区域的波速值会有明显的骤降,2种方法的组合探测模式可为断裂构造具体位置的圈定提供更好的指导。钻探结果验证了借助声波测井数据校正后的高密度电阻率法反演结果比未校正之前更加符合实际地质情况。

  • 加载中
  • 图 1  岩样破裂前后照片

    Figure 1. 

    图 2  研究区地理位置测线布置图

    Figure 2. 

    图 3  L1测线高密度电阻率法反演剖面图

    Figure 3. 

    图 4  ZK-1声波波速曲线与钻孔资料图

    Figure 4. 

    图 5  断层破碎带电阻率和声波波速曲线对比图

    Figure 5. 

    图 6  断层破碎带处不同垂直滤波比系数的电阻率曲线图

    Figure 6. 

    图 7  断层破碎带处不同垂直滤波比系数的电阻率曲线和声波波速曲线对比图

    Figure 7. 

    图 8  系数为1.6的L1测线高密度电阻率反演剖面图

    Figure 8. 

    图 9  断裂构造三维空间分布图

    Figure 9. 

    图 10  钻孔ZK-2柱状图及岩心照片图

    Figure 10. 

    表 1  岩石破裂前后的电阻率与声波波速变化特征

    Table 1.  Characteristics of resistivity and acoustic wave velocity changes in the rocks before and after hydraulic fracturing

    岩石
    样品
    岩样
    直径
    /mm
    岩样
    长度
    /mm
    破裂前 破裂后
    电阻率值
    /(Ω·m)
    声波波速值
    /(km·s−1
    电阻率值
    /(Ω·m)
    声波波速值
    /(km·s−1
    1 50.50 110.40 1261 6.42 86 5.16
    2 50.63 111.54 1892 5.36 139 4.28
    3 50.60 110.38 1182 5.21 171 4.72
    4 50.47 110.41 1291 5.02 210 4.68
    下载: 导出CSV

    表 2  KV与岩体完整程度的对应关系[26]

    Table 2.  Correspondence between KV and the integrity degree of rock mass

    KV >0.75 >0.55~0.75 >0.35~0.55 0.15~0.35 <0.15
    岩体完整程度 完整 较完整 较破碎 破碎 极破碎
    下载: 导出CSV

    表 3  声波测井结果

    Table 3.  Results of acoustic well logging

    孔深/m 层厚/m 岩性 声波波速值/(km·s−1 KV 破碎程度
    极小值 极大值 平均值
    7.00
    10.40 3.40 砾岩 2.00 3.05 2.54 0.26 破碎
    19.80 9.40 石英砂岩 3.11 5.00 3.83 0.61 较完整
    31.20 11.40 闪长玢岩 1.98 2.48 2.07 0.15 极破碎
    下载: 导出CSV
  • [1]

    FAVREAU P,WOLF S. Theoretical and numerical stress analysis at edges of interacting faults:application to quasi-static fault propagation modelling[J]. Geophysical Journal International,2009,179(2):733 − 750. doi: 10.1111/j.1365-246X.2009.04314.x

    [2]

    PERRIN C,WALDHAUSER F,SCHOLZ C H. The shear deformation zone and the smoothing of faults with displacement[J]. Journal of Geophysical Research:Solid Earth,2021,126(5):e2020JB020447. doi: 10.1029/2020JB020447

    [3]

    周保,孙皓,魏赛拉加,等. 冷湖赛什腾山天文台工程地质选址评价[J]. 水文地质工程地质,2022,49(4):165 − 174. [ZHOU Bao,SUN Hao,WEI Sailajia,et al. Site selection evaluation of engineering geology of the Lenghu Saishiteng Mountain Observatory[J]. Hydrogeology & Engineering Geology,2022,49(4):165 − 174. (in Chinese with English abstract)]

    ZHOU Bao, SUN Hao, WEI Sailajia, et al. Site selection evaluation of engineering geology of the Lenghu Saishiteng Mountain Observatory[J]. Hydrogeology & Engineering Geology, 2022, 494): 165174. (in Chinese with English abstract)

    [4]

    刘明辉,薛建,王者江,等. 工程场地隐伏断裂的探测与地震活动性评价[J]. 物探与化探,2018,42(4):839 − 845. [LIU Minghui,XUE Jian,WANG Zhejiang,et al. The detection of buried faults in engineering sites and the evaluation of seismic activity[J]. Geophysical and Geochemical Exploration,2018,42(4):839 − 845. (in Chinese with English abstract)]

    LIU Minghui, XUE Jian, WANG Zhejiang, et al. The detection of buried faults in engineering sites and the evaluation of seismic activity[J]. Geophysical and Geochemical Exploration, 2018, 424): 839845. (in Chinese with English abstract)

    [5]

    李坚,邓宏科,张家德,等. 可控源音频大地电磁勘探在大瑞铁路高黎贡山隧道地质选线中的应用[J]. 水文地质工程地质,2009,36(2):72 − 76. [LI Jian,DENG Hongke,ZHANG Jiade,et al. Application of geological routing about CSAMT exploration in Gaoligong Mountain tunnel of Dali-Ruili Railway[J]. Hydrogeology & Engineering Geology,2009,36(2):72 − 76. (in Chinese with English abstract)]

    LI Jian, DENG Hongke, ZHANG Jiade, et al. Application of geological routing about CSAMT exploration in Gaoligong Mountain tunnel of Dali-Ruili Railway[J]. Hydrogeology & Engineering Geology, 2009, 362): 7276. (in Chinese with English abstract)

    [6]

    杨志华,郭长宝,吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua,GUO Changbao,WU Ruian,et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract)]

    YANG Zhihua, GUO Changbao, WU Ruian, et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology, 2021, 485): 91101. (in Chinese with English abstract)

    [7]

    SANA H,TABORIK P,VALENTA J,et al. Detecting active faults in intramountain basins using electrical resistivity tomography:A focus on Kashmir Basin,NW Himalaya[J]. Journal of Applied Geophysics,2021,192:104395. doi: 10.1016/j.jappgeo.2021.104395

    [8]

    汪佳蓓,陈青云,胡怡,等. 深部煤层小断层断距识别精度研究[J]. 地球物理学进展,2022,37(3):1159 − 1169. [WANG Jiabei,CHEN Qingyun,HU Yi,et al. Study on the identification accuracy of small fault displacement in deep coal bed[J]. Progress in Geophysics,2022,37(3):1159 − 1169. (in Chinese with English abstract)]

    WANG Jiabei, CHEN Qingyun, HU Yi, et al. Study on the identification accuracy of small fault displacement in deep coal bed[J]. Progress in Geophysics, 2022, 373): 11591169. (in Chinese with English abstract)

    [9]

    付光明,黄进调,刘阳,等. 高密度电阻率法与CSAMT法在江西会昌县坝背地热勘查中的综合探测[J]. 中国地质,2019,46(4):927 − 936. [FU Guangming,HUANG Jintiao,LIU Yang,et al. Multi-electrode resistivity method and CSAMT method in geothermal exploration of Babei Area in Huichang County,Jiangxi Province[J]. Geology in China,2019,46(4):927 − 936. (in Chinese with English abstract)]

    FU Guangming, HUANG Jintiao, LIU Yang, et al. Multi-electrode resistivity method and CSAMT method in geothermal exploration of Babei Area in Huichang County, Jiangxi Province[J]. Geology in China, 2019, 464): 927936. (in Chinese with English abstract)

    [10]

    SEMINSKY K Z,ZARIPOV R M,OLENCHENKO V V. Interpretation of shallow electrical resistivity images of faults:tectonophysical approach[J]. Russian Geology and Geophysics,2016,57(9):1349 − 1358. doi: 10.1016/j.rgg.2016.08.020

    [11]

    李华,王东辉,张伟,等. 地球物理探测技术在成都市浅表地质结构调查中的应用研究[J]. 中国地质,2022,49(5):1438 − 1457. [LI Hua,WANG Donghui,ZHANG Wei,et al. Application research of geophysical exploration technology in the investigation of shallow geological structure in Chengdu[J]. Geology in China,2022,49(5):1438 − 1457. (in Chinese with English abstract)]

    LI Hua, WANG Donghui, ZHANG Wei, et al. Application research of geophysical exploration technology in the investigation of shallow geological structure in Chengdu[J]. Geology in China, 2022, 495): 14381457. (in Chinese with English abstract)

    [12]

    周越,曾昭发,唐海燕,等. 公路勘察中滑坡体的地球物理特征与分析——以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版),2021,51(2):638 − 644. [ZHOU Yue,ZENG Zhaofa,TANG Haiyan,et al. Geophysical Characteristics of Landslide Body in Highway Reconnaisance:A Case Study in Highway Prospecting of Zhangyu Line. Journal of Jilin University(Earth Science Edition),2021,51(2):638 − 644. (in Chinese with English abstract)]

    ZHOU Yue, ZENG Zhaofa, TANG Haiyan, et al. Geophysical Characteristics of Landslide Body in Highway Reconnaisance: A Case Study in Highway Prospecting of Zhangyu Line. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 638 − 644. (in Chinese with English abstract)

    [13]

    方艺翔,李卓,范光亚,等. 监测资料、压水试验与综合物探法在某心墙坝渗漏识别中的应用研究[J]. 水利水电技术(中英文),2022,53(2):87 − 97. [FANG Yixiang,LI Zhuo,FAN Guangya,et al. Application of monitoring data,water pressure test and comprehensive geophysical method to identification of leakage of a core dam[J]. Water Resources and Hydropower Engineering,2022,53(2):87 − 97. (in Chinese with English abstract)]

    FANG Yixiang, LI Zhuo, FAN Guangya, et al. Application of monitoring data, water pressure test and comprehensive geophysical method to identification of leakage of a core dam[J]. Water Resources and Hydropower Engineering, 2022, 532): 8797. (in Chinese with English abstract)

    [14]

    丁超,解阳波,张家豪,等. 三维高密度电法揭示SAGD地面窜漏通道[J]. 吉林大学学报(地球科学版),2022,52(6):2021 − 2033. [DING Chao,XIE Yangbo,ZHANG Jiahao,et al. Imaging the ground leakage channel of SAGD based on three-dimensional electrical resistivity tomography[J]. Journal of Jilin University (Earth Science Edition),2022,52(6):2021 − 2033. (in Chinese with English abstract)]

    DING Chao, XIE Yangbo, ZHANG Jiahao, et al. Imaging the ground leakage channel of SAGD based on three-dimensional electrical resistivity tomography[J]. Journal of Jilin University (Earth Science Edition), 2022, 526): 20212033. (in Chinese with English abstract)

    [15]

    陈松,陈长敬,罗士新,等. 广州南沙厚覆盖区近地表地层结构分析:基于二维地球物理多方法探测结果[J]. 地质通报,2023,42(1):168 − 179. [CHEN Song,CHEN Changjing,LUO Shixin,et al. Near surface stratigraphic structure analysis in Nansha of Guangzhou thick overburden area:Based on multi method results of 2D geophysics exploration[J]. Geological Bulletin of China,2023,42(1):168 − 179. (in Chinese with English abstract)]

    CHEN Song, CHEN Changjing, LUO Shixin, et al. Near surface stratigraphic structure analysis in Nansha of Guangzhou thick overburden area: Based on multi method results of 2D geophysics exploration[J]. Geological Bulletin of China, 2023, 421): 168179. (in Chinese with English abstract)

    [16]

    贾龙,雷明堂,程小杰. 基于井中超声波成像的岩溶特征高精度探测和评价[J]. 地质通报,2022,41(增刊1):453 − 460. [JIA Long,LEI Mingtang,CHENG Xiaojie. High precision detection and evaluation of karst features based on borehole ultrasonic imaging[J]. Geological Bulletin of China,2022,41(Sup 1):453 − 460. (in Chinese with English abstract)]

    JIA Long, LEI Mingtang, CHENG Xiaojie. High precision detection and evaluation of karst features based on borehole ultrasonic imaging[J]. Geological Bulletin of China, 2022, 41(Sup 1): 453 − 460. (in Chinese with English abstract)

    [17]

    胡刚,何正勤,李娜,等. 跨安宁河断裂带浅孔综合地球物理测井成果分析[J]. 地震学报,2016,38(5):684 − 692. [HU Gang,HE Zhengqin,LI Na,et al. Analyses on integrated geophysical logging results in shallow hole across the Anninghe fault zone[J]. Acta Seismologica Sinica,2016,38(5):684 − 692. (in Chinese with English abstract)]

    HU Gang, HE Zhengqin, LI Na, et al. Analyses on integrated geophysical logging results in shallow hole across the Anninghe fault zone[J]. Acta Seismologica Sinica, 2016, 385): 684692. (in Chinese with English abstract)

    [18]

    王新杰,杨进平,王营超,等. 声波测试技术在地下油库选址勘查中的应用[J]. 工程地球物理学报,2013,10(5):648 − 651. [WANG Xinjie,YANG Jinping,WANG Yingchao,et al. The application of acoustical testing technique in site selection of oil cellar[J]. Chinese Journal of Engineering Geophysics,2013,10(5):648 − 651. (in Chinese with English abstract)]

    WANG Xinjie, YANG Jinping, WANG Yingchao, et al. The application of acoustical testing technique in site selection of oil cellar[J]. Chinese Journal of Engineering Geophysics, 2013, 105): 648651. (in Chinese with English abstract)

    [19]

    朱飞飞. 地井联合物探技术在岩溶注浆检测中的应用[J]. 工程地球物理学报,2022,19(4):450 − 458. [ZHU Feifei. Application of geophysical prospecting technology combined with ground and well in Karst grouting detection[J]. Chinese Journal of Engineering Geophysics,2022,19(4):450 − 458. (in Chinese with English abstract)]

    ZHU Feifei. Application of geophysical prospecting technology combined with ground and well in Karst grouting detection[J]. Chinese Journal of Engineering Geophysics, 2022, 194): 450458. (in Chinese with English abstract)

    [20]

    易强,李望明,景营利,等. 高密度电法数据处理结合钻孔波速测试在土洞发育区的应用实例[J]. 物探化探计算技术,2021,43(1):104 − 107. [YI Qiang,LI Wangming,JING Yingli,et al. The application of high-density resistivity method data processing combined with borehole wave velocity measurement in soil hole development area[J]. Computing Techniques for Geophysical and Geochemical Exploration,2021,43(1):104 − 107. (in Chinese with English abstract)]

    YI Qiang, LI Wangming, JING Yingli, et al. The application of high-density resistivity method data processing combined with borehole wave velocity measurement in soil hole development area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 431): 104107. (in Chinese with English abstract)

    [21]

    陈清. 高密度电法与跨孔层析成像在岩溶探测中的 应用分析[J]. 工程地球物理学报,2017,14(4):427 − 434. [CHEN Qing. Application of high density electrical method and cross-hole tomography imaging to Karst detection[J]. Chinese Journal of Engineering Geophysics,2017,14(4):427 − 434. (in Chinese with English abstract)]

    CHEN Qing. Application of high density electrical method and cross-hole tomography imaging to Karst detection[J]. Chinese Journal of Engineering Geophysics, 2017, 144): 427434. (in Chinese with English abstract)

    [22]

    MENG Fangsong,ZHANG Gang,QI Yaping,et al. Application of combined electrical resistivity tomography and seismic reflection method to explore hidden active faults in Pingwu,Sichuan,China[J]. Open Geosciences,2020,12(1):174 − 189. doi: 10.1515/geo-2020-0040

    [23]

    潘剑伟,占嘉诚,洪涛,等. 地面核磁共振方法和高密度电阻率法联合找水[J]. 地质科技情报,2018,37(3):253 − 262. [PAN Jianwei,ZHAN Jiacheng,HONG Tao,et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information,2018,37(3):253 − 262. (in Chinese with English abstract)]

    PAN Jianwei, ZHAN Jiacheng, HONG Tao, et al. Combined use of surface nuclear magnetic resonance and electrical resistivity imaging in detecting groundwater[J]. Geological Science and Technology Information, 2018, 373): 253262. (in Chinese with English abstract)

    [24]

    楚泽涵,黄隆基,高杰,等. 地球物理测井方法与原理[M]. 北京:石油工业出版社,2007:225 − 227. [CHU Zehan,HUANG Longji,GAO Jie,et al. Geophysical logging methods and principles[M]. Beijing:Petrpleum Industry Press,2007:225 − 227. (in Chinese)]

    CHU Zehan, HUANG Longji, GAO Jie, et al. Geophysical logging methods and principles[M]. Beijing: Petrpleum Industry Press, 2007: 225 − 227. (in Chinese)

    [25]

    谭礼洪,张国强,谭忠健,等. 利用阵列声波测井资料评价变质岩储层有效性[J]. 石油地球物理勘探,2022,57(6):1464 − 1472. [TAN Lihong,ZHANG Guoqiang,TAN Zhongjian,et al. Evaluation of metamorphic rock reservoir effectiveness by array acoustic logging data[J]. Oil Geophysical Prospecting,2022,57(6):1464 − 1472. (in Chinese with English abstract)]

    TAN Lihong, ZHANG Guoqiang, TAN Zhongjian, et al. Evaluation of metamorphic rock reservoir effectiveness by array acoustic logging data[J]. Oil Geophysical Prospecting, 2022, 576): 14641472. (in Chinese with English abstract)

    [26]

    中华人民共和国住房和城乡建设部. 工程岩体分级标准:GB/T 50218—2014[S]. 北京:中国计划出版社,2015. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for engineering classification of rock mass:GB/T 50218—2014[S]. Beijing:China Planning Press,2015. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2015. (in Chinese)

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1050
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2023-06-27
修回日期:  2023-08-16
刊出日期:  2024-03-15

目录