Development characteristics and river blocking outburst analysis of Shadong landslide in the upper reaches of Jinsha River
-
摘要:
沙东滑坡位于金沙江结合带内,复活变形迹象明显,极可能形成滑坡-堵江-洪水灾害链,严重威胁沿线重大工程建设、交通设施以及人民生命财产安全。采用多源遥感动态监测、工程地质调查、数值模拟等方法,分析滑坡的复活变形特征,探讨滑坡堵江溃决的危险性。结果表明:沙东滑坡为巨型滑坡,体积约
23045 ×104 m3,目前处于蠕滑变形阶段,2018—2023年存在持续变形,滑坡变形区主要集中在斜坡前缘,下游侧变形比上游侧强烈。沙东滑坡沿基覆界面滑动,表现为牵引式渐进破坏,在稳定性分析的基础上,建立了3种潜在失稳模式:①天然工况下,C3次级滑体前缘失稳,滑坡持续过程约35 s,滑体最大速度达30 m/s,堵江堰塞坝高度约90 m,堰塞湖库容约1.62×108 m3,堰塞坝溃决后拉哇电站坝址处最大洪水流量约3535 m3/s,最大洪峰高度约14 m;②暴雨工况下,Ⅱ-2区失稳,堵江堰塞坝高度约133 m,堰塞湖库容约4.10×108 m3,堰塞坝溃决后拉哇电站坝址处最大洪水流量约11315 m3/s,最大洪峰高度约31 m;③暴雨+地震工况下,Ⅱ-1、Ⅱ-2区同时失稳,堵江堰塞坝高度约153 m,堰塞湖库容约5.66×108 m3,堰塞坝溃决后拉哇电站坝址处最大洪水流量约19960 m3/s,最大洪峰高度约45 m。沙东滑坡堵江风险高、致灾性强,建议采用天-空-地-内一体化的手段进行持续监测,研究滑坡的预警阈值,精准管控重大地质灾害风险。Abstract:The Shadong landslide, located in the Jinsha suture belt, exhibits significant signs of deformation. It is a high risk of developing into a disaster chain of landslide, river blockage, and flood, posing a serious threat to major engineering construction, transportation facilities, and people's lives and property. In this study, multi-source remote sensing dynamic monitoring, engineering geological survey, and numerical simulation were used to analyze the deformation characteristics and explore the risk of river blocking outburst of the Shadong landslide. The results show that the Shadong landslide is a giant landslide with a volume of approximately
23045 ×104 m3. The landslide is currently in the stage of creep deformation, with continuous deformation from 2018 to 2023. The reactivation deformation area of the landslide is mainly concentrated at the front edge of the slope, and the deformation on the downstream side is stronger than that on the upstream side. The Shadong landslide slides along the bedrock cover interface, exhibiting a traction type progressive failure. Based on stability analysis, three potential instability modes have been established. Under natural conditions, the leading edge of the secondary landslide C3 is unstable, with the landslide event lasting around 35 seconds. The maximum speed of the landslide reaches 30 m/s. The height of the barrier dam is about 90 m, and the barrier lake capacity is about 1.62×108 m3, with a maximum flood flow of approximately3535 m3/s and a flood peak height of approximately 14 m at the dam site of the Lava Power Station after the barrier dam failure. Under storm conditions, instability occurs in zone II-2, forming a 133-meter-high barrier dam with a lake capacity of approximately 4.10×108 m3. The maximum flood flow could reach11315 m3/s, with a maximum flood peak height of approximately 31 m at the Lava Power Station. In the event of both storm and earthquake conditions, II-1 and II-2 zone are unstable at the same time, resulting in the height of the barrier dam of approximately 153 m, with a barrier lake capacity of approximately 5.66×108 m3. The maximum flood flow is approximately19960 m3/s, with a maximum flood peak height of approximately 45m at the dam site of the Lava Power Station after the barrier dam failure. Given the high risk of river blockage and the catastrophic potential of the Shadong landslide, continuous monitoring through integrated sky, air, ground, and interior methods is recommended. Additionally, further study is needed to establish early warning thresholds and accurately manage the risk of major geological disasters. -
-
图 1 巴塘至白玉段堵江滑坡分布图(底图据1∶25万地质图、滑坡数据引自文献[3])
Figure 1.
表 1 沙东滑坡遥感数据源信息表
Table 1. Remote sensing data source of Shadong landslide
序号 成像时间 数据源 分辨率/处理方法 1 2019-06-30 无人机航测 0.2 m 2 2020-06-15 无人机航测 0.2 m 3 2023-02-20 无人机航测 0.2 m 4 2018-11-08 —
2022-04-22Sentinel-1A
(升轨、C波段)Stacking-InSAR、
SBAS-InSAR表 2 沙东滑坡长度大于100 m裂缝信息
Table 2. Cracks information of Shadong landslide with a length of more than 100 m
编号 影像特征 分布区域 长度/m 走向/(°) 下挫/cm 张开度/cm 类型 成像时间 LF001 灰色,呈弧形展布 Ⅱ-5区 195 139 3~10 5~10 拉张裂缝 2019-06-30 LF003 灰色,呈弧形展布 Ⅱ-5区 101 131 5~10 5~10 拉张裂缝 2019-06-30 LF006 灰色,呈弧形展布 Ⅱ-5区 122 4 5~10 5~10 拉张裂缝 2019-06-30 LF011 灰色,呈弧形展布 Ⅱ-2区 183 158 50~70 30~40 拉张裂缝 2019-06-30 LF016 灰色,呈弧形展布 Ⅱ-2区 146 122 15~20 15~25 拉张裂缝 2019-06-30 LF020 灰色,呈弧形展布 Ⅱ-2区 178 92 10~20 20~25 拉张裂缝 2019-06-30 LF021 灰色,呈弧形展布 Ⅱ-2区 172 60 10~20 20~25 拉张裂缝 2019-06-30 LF022 灰色,呈弧形展布 Ⅱ-2区 300 69 50~70 20~30 拉张裂缝 2019-06-30 LF023 灰色,呈弧形展布 Ⅱ-2区 159 106 50~70 20~30 拉张裂缝 2019-06-30 LF024 灰色,呈弧形展布 Ⅱ-2区 181 98 20~30 20~30 拉张裂缝 2019-06-30 LF025 灰色,呈弧形展布 Ⅱ-2区 123 104 20~30 20~30 拉张裂缝 2019-06-30 LF032 灰色,呈弧形展布 Ⅱ-2区 158 163 30~40 20~30 拉张裂缝 2019-06-30 LF036 灰色,呈弧形展布 Ⅱ-2区 145 157 30~40 20~30 拉张裂缝 2019-06-30 LF037 灰色,呈弧形展布 Ⅱ-2区 122 118 20~30 20~30 拉张裂缝 2019-06-30 LF038 灰色,呈弧形展布 Ⅱ-2区 166 92 20~30 20~30 拉张裂缝 2019-06-30 LF041 灰色,呈马蹄形展布 Ⅱ-2区 103 126 50~70 20~30 拉张裂缝 2019-06-30 LF043 灰色,呈弧形展布 Ⅱ-2区 164 6 50~70 20~30 拉张裂缝 2019-06-30 LF058 灰色,呈弧形展布 Ⅱ-4区 153 84 20~30 20~30 拉张裂缝 2019-06-30 LF063 灰色,呈弧形展布 Ⅱ-2区 174 79 50~60 20~40 拉张裂缝 2019-06-30 LF064 灰色,呈弧形展布 Ⅱ-2区 190 71 50~60 20~40 拉张裂缝 2019-06-30 LF066 灰色,呈弧形展布 Ⅱ-2区 104 115 30~40 20~30 拉张裂缝 2019-06-30 LF106 灰色,呈弧形展布 Ⅱ-2区 130 9 30~40 20~30 剪切裂缝 2020-06-15 LF107 灰色,呈弧形展布 Ⅱ-2区 107 17 30~40 20~30 剪切裂缝 2020-06-15 LF108 灰色,呈弧形展布 Ⅱ-2区 106 118 20~30 20~30 拉张裂缝 2020-06-15 表 3 沙东滑坡不同失稳模式下堰塞湖规模
Table 3. Barrier lake scales under different instability modes of Shadong landslide
失稳组合
模式失稳块体 堵江方量
/(104 m3)堵江高度
/m堰塞湖最高
水位高程/m堰塞湖库容
/(108 m3)① C3前缘 720 90 2750 1.62 ② Ⅱ-2区 3300 133 2793 4.10 ③ Ⅱ-1区 6800 153 2813 5.66 Ⅱ-2区 -
[1] 常玉巧,陈立春,张琦. 金沙江断裂带构造地貌与断裂活动特征研究[J]. 国际地震动态,2019,49(8):142 − 143. [CHANG Yuqiao,CHEN Lichun,ZHANG Qi. Analysis of tectonic geomorphology and activity characteristics of the Jinsha river fault[J]. Recent Developments in World Seismology,2019,49(8):142 − 143. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4975.2019.08.114
CHANG Yuqiao, CHEN Lichun, ZHANG Qi. Analysis of tectonic geomorphology and activity characteristics of the Jinsha river fault[J]. Recent Developments in World Seismology, 2019, 49(8): 142 − 143. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4975.2019.08.114
[2] 赵博,高原,刘杰,等. 2010年以来四川地区中强地震震源机制反演及深度确定[J]. 地球物理学报,2019,62(1):130 − 142. [ZHAO Bo,GAO Yuan,LIU Jie,et al. Focal mechanism inversion and source depth locating of moderate-major earthquakes in the Sichuan region since 2010[J]. Chinese Journal of Geophysics,2019,62(1):130 − 142. (in Chinese with English abstract)] doi: 10.6038/cjg2019M0155
ZHAO Bo, GAO Yuan, LIU Jie, et al. Focal mechanism inversion and source depth locating of moderate-major earthquakes in the Sichuan region since 2010[J]. Chinese Journal of Geophysics, 2019, 62(1): 130 − 142. (in Chinese with English abstract) doi: 10.6038/cjg2019M0155
[3] 刘文,王猛,朱赛楠,等. 基于光学遥感技术的高山极高山区高位地质灾害链式特征分析——以金沙江上游典型堵江滑坡为例[J]. 中国地质灾害与防治学报,2021,32(5):29 − 39. [LIU Wen,WANG Meng,ZHU Sainan,et al. An analysis on chain characteristics of highstand geological disasters in high mountains and extremely high mountains based on optical remote sensing technology:a case study of representative large landslides in upper reach of Jinsha River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):29 − 39. (in Chinese with English abstract)]
LIU Wen, WANG Meng, ZHU Sainan, et al. An analysis on chain characteristics of highstand geological disasters in high mountains and extremely high mountains based on optical remote sensing technology: a case study of representative large landslides in upper reach of Jinsha River[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 29 − 39. (in Chinese with English abstract)
[4] 李雪,郭长宝,杨志华,等. 金沙江断裂带雄巴巨型古滑坡发育特征与形成机理[J]. 现代地质,2021,35(1):47 − 55. [LI Xue,GUO Changbao,YANG Zhihua,et al. Development characteristics and formation mechanism of the xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience,2021,35(1):47 − 55. (in Chinese with English abstract)]
LI Xue, GUO Changbao, YANG Zhihua, et al. Development characteristics and formation mechanism of the xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience, 2021, 35(1): 47 − 55. (in Chinese with English abstract)
[5] 朱赛楠,殷跃平,王猛,等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例[J]. 岩土工程学报,2021,43(4):688 − 697. [ZHU Sainan,YIN Yueping,WANG Meng,et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone:case study of sela landslide in Jinsha River,Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688 − 697. (in Chinese with English abstract)] doi: 10.11779/CJGE202104011
ZHU Sainan, YIN Yueping, WANG Meng, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone: case study of sela landslide in Jinsha River, Tibet[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 688 − 697. (in Chinese with English abstract) doi: 10.11779/CJGE202104011
[6] 陈菲,王塞,高云建,等. 白格滑坡裂缝区演变过程及其发展趋势分析[J]. 工程科学与技术,2020,52(5):71 − 78. [CHEN Fei,WANG Sai,GAO Yunjian,et al. Evolution of the cracking zones at the site of the baige landslides and their future development[J]. Advanced Engineering Sciences,2020,52(5):71 − 78. (in Chinese with English abstract)]
CHEN Fei, WANG Sai, GAO Yunjian, et al. Evolution of the cracking zones at the site of the baige landslides and their future development[J]. Advanced Engineering Sciences, 2020, 52(5): 71 − 78. (in Chinese with English abstract)
[7] 王立朝,温铭生,冯振,等. 中国西藏金沙江白格滑坡灾害研究[J]. 中国地质灾害与防治学报,2019,30(1):1 − 9. [WANG Lichao,WEN Mingsheng,FENG Zhen,et al. Researches on the baige landslide at Jinshajiang River,Tibet,China[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):1 − 9. (in Chinese with English abstract)]
WANG Lichao, WEN Mingsheng, FENG Zhen, et al. Researches on the baige landslide at Jinshajiang River, Tibet, China[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1): 1 − 9. (in Chinese with English abstract)
[8] 郭长宝,吴瑞安,李雪,等. 川西日扎潜在巨型岩质滑坡发育特征与形成机理研究[J]. 工程地质学报,2020,28(4):772 − 783. [GUO Changbao,WU Ruian,LI Xue,et al. Developmental characteristics and formation mechanism of the rizha potential giant rock landslide,western Sichuan province,China[J]. Journal of Engineering Geology,2020,28(4):772 − 783. (in Chinese with English abstract)]
GUO Changbao, WU Ruian, LI Xue, et al. Developmental characteristics and formation mechanism of the rizha potential giant rock landslide, western Sichuan province, China[J]. Journal of Engineering Geology, 2020, 28(4): 772 − 783. (in Chinese with English abstract)
[9] 唐尧,王立娟,马国超,等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报,2019,23(2):252 − 261. [TANG Yao,WANG Lijuan,MA Guochao,et al. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing,2019,23(2):252 − 261. (in Chinese with English abstract)]
TANG Yao, WANG Lijuan, MA Guochao, et al. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252 − 261. (in Chinese with English abstract)
[10] 唐尧,王立娟,马国超,等. 基于“高分+” 的金沙江滑坡灾情监测与应用前景分析[J]. 武汉大学学报(信息科学版),2019,44(7):1082 − 1092. [TANG Yao,WANG Lijuan,MA Guochao,et al. Disaster monitoring and application prospect analysis of the Jinsha River landslide based on “Gaofen+”[J]. Geomatics and Information Science of Wuhan University,2019,44(7):1082 − 1092. (in Chinese with English abstract)]
TANG Yao, WANG Lijuan, MA Guochao, et al. Disaster monitoring and application prospect analysis of the Jinsha River landslide based on “Gaofen+”[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1082 − 1092. (in Chinese with English abstract)
[11] 吴瑞安,马海善,张俊才,等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质,2021,48(5):120 − 128. [WU Ruian,MA Haishan,ZHANG Juncai,et al. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology,2021,48(5):120 − 128. (in Chinese with English abstract)]
WU Ruian, MA Haishan, ZHANG Juncai, et al. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 120 − 128. (in Chinese with English abstract)
[12] 陈松,陈剑,刘超. 金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积物粒度分维特征分析[J]. 中国地质灾害与防治学报,2016,27(2):78 − 85. [CHEN Song,CHEN Jian,LIU Chao. Analysis of grain size fractal feature of outburst deposits induced by the Xuelongnang Paleolandslide-Dammed lake in the upper Jinsha River[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):78 − 85. (in Chinese with English abstract)]
CHEN Song, CHEN Jian, LIU Chao. Analysis of grain size fractal feature of outburst deposits induced by the Xuelongnang Paleolandslide-Dammed lake in the upper Jinsha River[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(2): 78 − 85. (in Chinese with English abstract)
[13] 许强,郑光,李为乐,等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报,2018,26(6):1534 − 1551. [XU Qiang,ZHENG Guang,LI Weile,et al. Study on successive landslide damming events of Jinsha river in Baige village on octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534 − 1551. (in Chinese with English abstract)]
XU Qiang, ZHENG Guang, LI Weile, et al. Study on successive landslide damming events of Jinsha river in Baige village on octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534 − 1551. (in Chinese with English abstract)
[14] 余志球,邓建辉,高云建,等. 金沙江白格滑坡及堰塞湖洪水灾害分析[J]. 防灾减灾工程学报,2020,40(2):286 − 292. [YU Zhiqiu,DENG Jianhui,GAO Yunjian,et al. Analysis on baige landslide and barrier lake flood disasters in Jinsha River[J]. Journal of Disaster Prevention and Mitigation Engineering,2020,40(2):286 − 292. (in Chinese with English abstract)]
YU Zhiqiu, DENG Jianhui, GAO Yunjian, et al. Analysis on baige landslide and barrier lake flood disasters in Jinsha River[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(2): 286 − 292. (in Chinese with English abstract)
[15] 唐辉明,李长冬,龚文平,等. 滑坡演化的基本属性与研究途径[J]. 地球科学,2022,47(12):4596 − 4608. [TANG Huiming,LI Changdong,GONG Wenping,et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science,2022,47(12):4596 − 4608. (in Chinese with English abstract)]
TANG Huiming, LI Changdong, GONG Wenping, et al. Fundamental attribute and research approach of landslide evolution[J]. Earth Science, 2022, 47(12): 4596 − 4608. (in Chinese with English abstract)
[16] 柴贺军,刘汉超,张倬元. 滑坡堵江的基本条件[J]. 地质灾害与环境保护,1996,7(1):41 − 46. [CHAI Hejun,LIU Hanchao,ZHANG Zhuoyuan. The main conditions of landslide dam[J]. Journal of Geological Hazards and Environment Preservation,1996,7(1):41 − 46. (in Chinese with English abstract)]
CHAI Hejun, LIU Hanchao, ZHANG Zhuoyuan. The main conditions of landslide dam[J]. Journal of Geological Hazards and Environment Preservation, 1996, 7(1): 41 − 46. (in Chinese with English abstract)
[17] 黄润秋,王士天,张倬元,等. 中国西南地壳浅表层动力学过程及其工程环境效应研究[M]. 成都:四川大学出版社,2001. [HUANG Runqiu,WANG Shitian,ZHANG Zhuoyuan,et al. A study on the dynamic processes and engineering environmental effects of the shallow surface crust in southwest China[M]. Chengdu:Sichuan University Press,2001. (in Chinese)]
HUANG Runqiu, WANG Shitian, ZHANG Zhuoyuan, et al. A study on the dynamic processes and engineering environmental effects of the shallow surface crust in southwest China[M]. Chengdu: Sichuan University Press, 2001. (in Chinese)
[18] 李炜. 水力计算手册[M]. 2版. 北京:中国水利水电出版社,2006. [LI Wei. Hydraulic calculation manual (Second Edition)[M]. 2nd ed. Beijing:China Water & Power Press,2006. (in Chinese)]
LI Wei. Hydraulic calculation manual (Second Edition)[M]. 2nd ed. Beijing: China Water & Power Press, 2006. (in Chinese)
-