砂岩冻结/解冻过程蠕变特性研究

宋勇军, 操警辉, 程柯岩, 杨慧敏, 毕冉, 张琨. 砂岩冻结/解冻过程蠕变特性研究[J]. 水文地质工程地质, 2024, 51(6): 93-103. doi: 10.16030/j.cnki.issn.1000-3665.202309059
引用本文: 宋勇军, 操警辉, 程柯岩, 杨慧敏, 毕冉, 张琨. 砂岩冻结/解冻过程蠕变特性研究[J]. 水文地质工程地质, 2024, 51(6): 93-103. doi: 10.16030/j.cnki.issn.1000-3665.202309059
SONG Yongjun, CAO Jinghui, CHENG Keyan, YANG Huimin, BI Ran, ZHANG Kun. Creep characteristics of sandstone during freezing/thawing process[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 93-103. doi: 10.16030/j.cnki.issn.1000-3665.202309059
Citation: SONG Yongjun, CAO Jinghui, CHENG Keyan, YANG Huimin, BI Ran, ZHANG Kun. Creep characteristics of sandstone during freezing/thawing process[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 93-103. doi: 10.16030/j.cnki.issn.1000-3665.202309059

砂岩冻结/解冻过程蠕变特性研究

  • 基金项目: 国家自然科学基金面上项目(11972283;42277182)
详细信息
    作者简介: 宋勇军(1979—),男,博士,教授,博士研究生导师,主要从事岩石力学与地下工程方面的教学与研究工作。E-mail:songyj79@xust.edu.cn
    通讯作者: 操警辉(1996—),男,硕士研究生,主要从事岩石力学方面的研究工作。E-mail:mprudence@163.com
  • 中图分类号: TU45

Creep characteristics of sandstone during freezing/thawing process

More Information
  • 寒区岩体长期经受荷载与冻融的共同作用,若不考虑冻融过程对其长期力学行为的影响,将会给寒区工程建设和安全运营带来重大的安全隐患。为此,以寒区某边坡工程砂岩为研究对象,通过开展不同冻结温度下的冻结/解冻过程单轴分级加载蠕变试验,使岩石在同一应力状态下处于冻结和解冻过程,真实再现寒区工程岩体长期力学响应特征。以此研究冻结/解冻过程对岩体长期力学特性的影响,并对其蠕应变、稳态蠕变速率及长期强度等宏观力学指标进行量化分析。结果表明:(1)砂岩冻结过程先后经历冷缩阶段、冻胀阶段和稳态蠕变阶段,解冻过程只经历融缩阶段和稳态蠕变阶段;冷缩阶段和融缩阶段砂岩发生收缩变形,冻胀阶段则发生膨胀变形;(2)冻结/解冻温度为−5 °C/25 °C、−10 °C/25 °C、−15 °C/25 °C时,砂岩蠕应变较常温状态下蠕应变增幅范围分别为102%~193%、81%~126%、105%~194%,解冻后稳态蠕变速率较冻结前最大增长3.65倍、4.31倍、5.56倍,冻结/解冻过程蠕变砂岩的长期强度是常温状态下长期强度的96.33%、88.52%、75.44%;(3)应力对冷缩、冻胀变形的产生起抑制作用而对融缩变形的产生起促进作用;冻结温度越低,冻胀变形和解冻后融缩变形越明显。文章提出的将蠕变与冻融过程相结合的试验方法能较为真实地反映工程实际,该方法为寒区岩体工程长期稳定性评价提供新途径。

  • 加载中
  • 图 1  砂岩岩样

    Figure 1. 

    图 2  试验装置

    Figure 2. 

    图 3  应力-应变曲线

    Figure 3. 

    图 4  冻结/解冻过程蠕变试验流程图

    Figure 4. 

    图 5  蠕变曲线

    Figure 5. 

    图 6  冻结过程蠕变曲线局部图

    Figure 6. 

    图 7  冷缩阶段应变

    Figure 7. 

    图 8  解冻过程蠕变曲线局部图与融缩应变

    Figure 8. 

    图 9  解冻后稳态蠕变速率与冻结温度的关系

    Figure 9. 

    图 10  蠕变速率

    Figure 10. 

    图 11  蠕应变比和稳态蠕变速率比

    Figure 11. 

    图 12  B-0岩样的等时曲线簇

    Figure 12. 

    表 1  岩样物理参数均值

    Table 1.  Average values of physical parameters of sandstone

    参数纵波波速/
    (m·s−1
    干密度/
    (g·cm−3
    饱和密度/
    (g·cm−3
    饱和含
    水率/%
    孔隙
    度/%
    均值2 2722.122.319.0119.13
    下载: 导出CSV

    表 2  岩样分组

    Table 2.  Rock samples grouping

    组别 岩样
    编号
    岩样用途简介 峰值强度
    /MPa
    平均峰值
    强度/MPa
    冻结(解冻)
    温度/°C
    A A-1 单轴压缩 10.05 9.86
    A-2 9.82
    A-3 9.72
    B B-0 常温蠕变
    B-1 冻结/解冻
    过程蠕变
    −5(25)
    B-2 −10(25)
    B-3 −15(25)
      注:—表示无数据;下表相同。
    下载: 导出CSV

    表 3  冻胀阶段应变

    Table 3.  Strain during the frost heave stage

    岩样编号 冻结温度/°C 加载等级
    1 2 3
    B-1 −5 0.041×10−2 0.034×10−2 0.025×10−2
    B-2 −10 0.077×10−2 0.057×10−2 0.039×10−2
    B-3 −15 0.100×10−2 0.066×10−2
    下载: 导出CSV

    表 4  蠕应变

    Table 4.  Creep strain

    岩样编号 冻结(解冻)温度/°C 加载等级 εtc/% εc/%
    B-1 −5(25) 1 0.029 0.015
    2 0.035 0.028
    3 0.045 0.044
    B-2 −10(25) 1 0.029 0.023
    2 0.039 0.041
    3 0.058 0.072
    B-3 −15(25) 1 0.033 0.017
    2 0.064 0.061
    3
    下载: 导出CSV

    表 5  稳态蠕变速率

    Table 5.  Creep rate of steady state

    岩样编号 冻结(解冻)温度/°C 加载等级 $\varepsilon_{\mathrm{c}}' $/(10−6 h−1 $\varepsilon_{\mathrm{c(F-T)}}' $/(10−6 h−1
    B-1 −5(25) 1 0.93 4.32
    2 4.61 7.26
    3 10.93 15.82
    B-2 −10(25) 1 3.67 19.48
    2 8.08 21.54
    3 16.10 31.84
    B-3 −15(25) 1 3.83 25.14
    2 13.04 32.19
    3
    下载: 导出CSV

    表 6  长期强度

    Table 6.  Long term strength

    岩样标号σ/MPaσ/σc
    B-06.270.636
    B-16.040.613
    B-25.550.563
    B-34.730.480
    下载: 导出CSV
  • [1]

    谭贤君,陈卫忠,伍国军,等. 低温冻融条件下岩体温度-渗流-应力-损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J]. 岩石力学与工程学报,2013,32(2):239 − 250. [TAN Xianjun,CHEN Weizhong,WU Guojun,et al. Study of thermo-hydro-mechanical-damage (THMD) coupled model in the condition of freeze-thaw cycles and its application to cold region tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):239 − 250. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-6915.2013.02.004

    TAN Xianjun, CHEN Weizhong, WU Guojun, et al. Study of thermo-hydro-mechanical-damage (THMD) coupled model in the condition of freeze-thaw cycles and its application to cold region tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 239 − 250. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.02.004

    [2]

    铁永波,徐伟,梁京涛,等. 川藏铁路卡子拉山滑坡发育特征与防灾减灾对策[J]. 水文地质工程地质,2021,48(5):129 − 136. [TIE Yongbo,XU Wei,LIANG Jingtao,et al. Characteristics of Kazila mountain landslide and its mitigation measures on the Sichuan-Xizang Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):129 − 136. (in Chinese with English abstract)]

    TIE Yongbo, XU Wei, LIANG Jingtao, et al. Characteristics of Kazila mountain landslide and its mitigation measures on the Sichuan-Xizang Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 129 − 136. (in Chinese with English abstract)

    [3]

    刘兵,郑坤,王超林,等. 冻融环境下基于声发射的砂岩各向异性劣化机理分析[J]. 中国地质灾害与防治学报,2024,35(1):132 − 142. [LIU Bing,ZHENG Kun,WANG Chaolin,et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):132 − 142. (in Chinese with English abstract)]

    LIU Bing, ZHENG Kun, WANG Chaolin, et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 132 − 142. (in Chinese with English abstract)

    [4]

    张继周,缪林昌,杨振峰. 冻融条件下岩石损伤劣化机制和力学特性研究[J]. 岩石力学与工程学报,2008,27(8):1688 − 1694. [ZHANG Jizhou,MIAO Linchang,YANG Zhenfeng. Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1688 − 1694. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2008.08.020

    ZHANG Jizhou, MIAO Linchang, YANG Zhenfeng. Research on rock degradation and deterioration mechanisms and mechanical characteristics under cyclic freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1688 − 1694. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.08.020

    [5]

    SONG Zhangping,WANG Tong,WANG Junbao,et al. Uniaxial compression mechanical properties and damage constitutive model of limestone under osmotic pressure[J]. International Journal of Damage Mechanics,2022,31(4):557 − 581. doi: 10.1177/10567895211045430

    [6]

    LUO Xuedong,JIANG Nan,FAN Xinyu,et al. Effects of freeze–thaw on the determination and application of parameters of slope rock mass in cold regions[J]. Cold Regions Science and Technology,2015,110:32 − 37. doi: 10.1016/j.coldregions.2014.11.002

    [7]

    孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报,2007,26(6):1081 − 1106. [SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1081 − 1106. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2007.06.001

    SUN Jun. Rock rheological mechanics and its advance in engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1081 − 1106. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.06.001

    [8]

    宋勇军,孟凡栋,毕冉,等. 冻融岩石蠕变特性及孔隙结构演化特征研究[J]. 水文地质工程地质,2023,50(6):69 − 79. [SONG Yongjun,MENG Fandong,BI Ran,et al. Research on creep characteristics and pore structure evolution characteristics of freezing-thawing rocks[J]. Hydrogeology & Engineering Geology,2023,50(6):69 − 79. (in Chinese with English abstract)]

    SONG Yongjun, MENG Fandong, BI Ran, et al. Research on creep characteristics and pore structure evolution characteristics of freezing-thawing rocks[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 69 − 79. (in Chinese with English abstract)

    [9]

    宋勇军,张磊涛,任建喜,等. 低温环境下红砂岩蠕变特性及其模型[J]. 煤炭学报,2020,45(8):2795 − 2803. [SONG Yongjun,ZHANG Leitao,REN Jianxi,et al. Creep property and model of red sandstone under low temperature environment[J]. Journal of China Coal Society,2020,45(8):2795 − 2803. (in Chinese with English abstract)]

    SONG Yongjun, ZHANG Leitao, REN Jianxi, et al. Creep property and model of red sandstone under low temperature environment[J]. Journal of China Coal Society, 2020, 45(8): 2795 − 2803. (in Chinese with English abstract)

    [10]

    单仁亮,白瑶,孙鹏飞,等. 冻结层状红砂岩三轴蠕变特性及本构模型研究[J]. 中国矿业大学学报,2019,48(1):12 − 22. [SHAN Renliang,BAI Yao,SUN Pengfei,et al. Study of triaxial creep mechanical properties and constitutive model of frozen stratified red sandstone[J]. Journal of China University of Mining & Technology,2019,48(1):12 − 22. (in Chinese with English abstract)]

    SHAN Renliang, BAI Yao, SUN Pengfei, et al. Study of triaxial creep mechanical properties and constitutive model of frozen stratified red sandstone[J]. Journal of China University of Mining & Technology, 2019, 48(1): 12 − 22. (in Chinese with English abstract)

    [11]

    YANG Xiurong,JIANG Annan,GUO Xinping. Effects of water content and temperature on creep properties of frozen red sandstone:An experimental study[J]. Bulletin of Engineering Geology and the Environment,2022,81(1):51. doi: 10.1007/s10064-021-02553-3

    [12]

    BAI Yao,SHAN Renliang,HAN Tianyu,et al. Study on triaxial creep behavior and the damage constitutive model of red sandstone containing a single ice-filled flaw[J]. International Journal of Damage Mechanics,2021,30(3):349 − 373. doi: 10.1177/1056789520961432

    [13]

    刘晓燕,刘路路,闫坤伐. 冻结褐色泥岩非线性加速蠕变西原模型优化[J]. 长江科学院院报,2017,34(12):101 − 105. [LIU Xiaoyan,LIU Lulu,YAN Kunfa. An optimized nishihara model for nonlinear accelerating creep of frozen brown mudstone[J]. Journal of Yangtze River Scientific Research Institute,2017,34(12):101 − 105. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20160466

    LIU Xiaoyan, LIU Lulu, YAN Kunfa. An optimized nishihara model for nonlinear accelerating creep of frozen brown mudstone[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(12): 101 − 105. (in Chinese with English abstract) doi: 10.11988/ckyyb.20160466

    [14]

    GAO Feng,XIONG Xin,XU Chaoshui,et al. Mechanical property deterioration characteristics and a new constitutive model for rocks subjected to freeze-thaw weathering process[J]. International Journal of Rock Mechanics and Mining Sciences,2021,140:104642. doi: 10.1016/j.ijrmms.2021.104642

    [15]

    任建喜,易归,陈旭,等. 人工冻结斜井洛河组砂岩解冻后蠕变模型试验研究[J]. 煤矿安全,2022,53(7):74 − 81. [REN Jianxi,YI Gui,CHEN Xu,et al. Experimental study on creep failure mechanism of artificially frozen sandstone of Luohe Formation after thawing[J]. Safety in Coal Mines,2022,53(7):74 − 81. (in Chinese with English abstract)]

    REN Jianxi, YI Gui, CHEN Xu, et al. Experimental study on creep failure mechanism of artificially frozen sandstone of Luohe Formation after thawing[J]. Safety in Coal Mines, 2022, 53(7): 74 − 81. (in Chinese with English abstract)

    [16]

    赵越,李磊, 闫晗,等. 水化-冻融耦合作用下大理岩单轴蠕变力学特性[J]. 吉林大学学报(地球科学版),2023,53(4):1195 − 1203. [ZHAO Yue,LI Lei,YAN Han,et al. Uniaxial creep mechanical properties of marble under hydration freeze-thaw coupling[J]. Journal of Jilin University (Earth Science Edition),2023,53(4):1195 − 1203. (in Chinese with English abstract)]

    ZHAO Yue, LI Lei, YAN Han, et al. Uniaxial creep mechanical properties of marble under hydration freeze-thaw coupling[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(4): 1195 − 1203. (in Chinese with English abstract)

    [17]

    陈国庆,郭帆,王剑超,等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学,2017,38(增刊1):203 − 210. [CHEN Guoqing,GUO Fan,WANG Jianchao,et al. Experimental study on triaxial creep characteristics of Shi Ying sandstone after freezing and thawing[J]. Rock and Soil Mechanics,2017,38(Sup 1):203 − 210. (in Chinese with English abstract)]

    CHEN Guoqing, GUO Fan, WANG Jianchao, et al. Experimental study on triaxial creep characteristics of Shi Ying sandstone after freezing and thawing[J]. Rock and Soil Mechanics, 2017, 38(Sup 1): 203 − 210. (in Chinese with English abstract)

    [18]

    蒋婷婷,潘华利,艾一帆,等. 冻融循环及含水率对冰碛土力学特性影响[J]. 地质科技通报,2024,43(2):238 − 252. [JIANG Tingting,PAN Huali,AI Yifan,et al. Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil[J]. Bulletin of Geological Science and Technology,2024,43(2):238 − 252.(in Chinese with English abstract)]

    JIANG Tingting, PAN Huali, AI Yifan, et al. Effect of freeze-thaw cycles and water content on the mechanical properties of moraine soil[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 238 − 252.(in Chinese with English abstract)

    [19]

    ZHOU Zhijun,ZHAN Haochen,HU Jiangyang,et al. Characteristics of unloading creep of tuffaceous sandstone in east tianshan tunnel under freeze-thaw cycles[J]. Advances in Materials Science and Engineering,2019,2019:7547564.

    [20]

    张峰瑞,姜谙男,杨秀荣,等. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学,2020,41(2):509 − 519. [ZHANG Fengrui,JIANG Annan,YANG Xiurong,et al. Experimental and model research on shear creep of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics,2020,41(2):509 − 519. (in Chinese with English abstract)]

    ZHANG Fengrui, JIANG Annan, YANG Xiurong, et al. Experimental and model research on shear creep of granite under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2020, 41(2): 509 − 519. (in Chinese with English abstract)

    [21]

    宋勇军,张磊涛,任建喜,等. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报,2021,43(5):841 − 849. [SONG Yongjun,ZHANG Leitao,REN Jianxi,et al. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering,2021,43(5):841 − 849. (in Chinese with English abstract)] doi: 10.11779/CJGE202105007

    SONG Yongjun, ZHANG Leitao, REN Jianxi, et al. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 841 − 849. (in Chinese with English abstract) doi: 10.11779/CJGE202105007

    [22]

    KANG Yongshui,HOU Congcong,LIU Bin et al. Frost deformation and a quasi-elastic-plastic-creep constitutive model for isotropic freezing rock[J]. International Journal of Geomechanics,2020,20(8):04020119. doi: 10.1061/(ASCE)GM.1943-5622.0001749

    [23]

    李祖勇,杨更社,魏尧. 白垩系冻结砂岩解冻过程中蠕变力学特性研究[J]. 岩石力学与工程学报,2021,40(9):1777 − 1788. [LI Zuyong,YANG Gengshe,WEI Yao. Study on creep mechanical properties of frozen Cretaceous sandstone during thawing process[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1777 − 1788. (in Chinese with English abstract)]

    LI Zuyong, YANG Gengshe, WEI Yao. Study on creep mechanical properties of frozen Cretaceous sandstone during thawing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1777 − 1788. (in Chinese with English abstract)

    [24]

    PRICK A. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J]. CATENA,1995,25(1/2/3/4):7 − 20.

    [25]

    王来贵,高晗,郭子钰,等. 受冻融循环作用的砂岩宏观变形特征研究[J]. 实验力学,2020,35(6):1113 − 1120. [WANG Laigui,GAO Han,GUO Ziyu,et al. Study on macroscopic deformation characteristics of sandstone subjected to freeze-thaw cycle[J]. Journal of Experimental Mechanics,2020,35(6):1113 − 1120. (in Chinese with English abstract)] doi: 10.7520/1001-4888-19-230

    WANG Laigui, GAO Han, GUO Ziyu, et al. Study on macroscopic deformation characteristics of sandstone subjected to freeze-thaw cycle[J]. Journal of Experimental Mechanics, 2020, 35(6): 1113 − 1120. (in Chinese with English abstract) doi: 10.7520/1001-4888-19-230

    [26]

    LI Tianguo,KONG lingwei,GUO Aiguo. The deformation and microstructure characteristics of expansive soil under freeze-thaw cycles with loads[J]. Cold Regions Science and Technology,2021,192:103393. doi: 10.1016/j.coldregions.2021.103393

    [27]

    FAIRHURST C E,HUDSON J A. 单轴压缩试验测定完整岩石应力-应变全曲线ISRM建议方法草案[J]. 岩石力学与工程学报,2000,19(6):802 − 808. [FAIRHURST C E,HUDSON J A. Draft ISRM recommended method for the determination of intact rock stress-strain full curve by uniaxial compression test[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(6):802 − 808. (in Chinese)] doi: 10.3321/j.issn:1000-6915.2000.06.025

    FAIRHURST C E, HUDSON J A. Draft ISRM recommended method for the determination of intact rock stress-strain full curve by uniaxial compression test[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 802 − 808. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.06.025

    [28]

    中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013. (in Chinese)]

    [29]

    呼枭. 寒区运营隧道冻害防治监测系统及应用[J]. 铁道标准设计,2016,60(7):107 − 111. [HU Xiao. The monitoring system for tunnel frost damage prevention and treatment in cold region and its application[J]. Railway Standard Design,2016,60(7):107 − 111. (in Chinese with English abstract)]

    HU Xiao. The monitoring system for tunnel frost damage prevention and treatment in cold region and its application[J]. Railway Standard Design, 2016, 60(7): 107 − 111. (in Chinese with English abstract)

    [30]

    裴向军,蒙明辉,袁进科,等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学,2017,38(7):1999 − 2006. [PEI Xiangjun,MENG Minghui,YUAN Jinke,et al. Freezing-thawing characteristics of fractured rockmass under dry and saturated conditions[J]. Rock and Soil Mechanics,2017,38(7):1999 − 2006. (in Chinese with English abstract)]

    PEI Xiangjun, MENG Minghui, YUAN Jinke, et al. Freezing-thawing characteristics of fractured rockmass under dry and saturated conditions[J]. Rock and Soil Mechanics, 2017, 38(7): 1999 − 2006. (in Chinese with English abstract)

    [31]

    李高山,贺义兴,严寿鹤,等. 矿物并不都是热胀冷缩[J]. 矿物岩石,1983,3(2):62 − 70. [LI Gaoshan,HE Yixing,YAN Shouhe,et al. Not all minerals expand on heating and contract on cooling[J]. Journal of Mineralogy and Petrology,1983,3(2):62 − 70. (in Chinese with English abstract)]

    LI Gaoshan, HE Yixing, YAN Shouhe, et al. Not all minerals expand on heating and contract on cooling[J]. Journal of Mineralogy and Petrology, 1983, 3(2): 62 − 70. (in Chinese with English abstract)

    [32]

    范秋雁,阳克青,王渭明. 泥质软岩蠕变机制研究[J]. 岩石力学与工程学报,2010,29(8):1555 − 1561. [FAN Qiuyan,YANG Keqing,WANG Weiming. Study of creep mechanism of argillaceous soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(8):1555 − 1561. (in Chinese with English abstract)]

    FAN Qiuyan, YANG Keqing, WANG Weiming. Study of creep mechanism of argillaceous soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1555 − 1561. (in Chinese with English abstract)

    [33]

    张广泽,陈国庆,简大华,等. 不同温降速率下岩石冻融特征研究[J]. 铁道工程学报,2019,36(8):19 − 23. [ZHANG Guangze,CHEN Guoqing,JIAN Dahua,et al. Research on the freeze-thaw characteristics of rock at different temperature drop rates[J]. Journal of Railway Engineering Society,2019,36(8):19 − 23. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-2106.2019.08.005

    ZHANG Guangze, CHEN Guoqing, JIAN Dahua, et al. Research on the freeze-thaw characteristics of rock at different temperature drop rates[J]. Journal of Railway Engineering Society, 2019, 36(8): 19 − 23. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2019.08.005

    [34]

    梁冰,张涛,王俊光,等. 片麻岩蠕变特性试验研究[J]. 实验力学,2018,33(3):451 − 460. [LIANG Bing,ZHANG Tao,WANG Junguang,et al. Experimental study of gneiss creep properties[J]. Journal of Experimental Mechanics,2018,33(3):451 − 460. (in Chinese with English abstract)] doi: 10.7520/1001-4888-17-035

    LIANG Bing, ZHANG Tao, WANG Junguang, et al. Experimental study of gneiss creep properties[J]. Journal of Experimental Mechanics, 2018, 33(3): 451 − 460. (in Chinese with English abstract) doi: 10.7520/1001-4888-17-035

    [35]

    赵龙,甘海啸,唐维,等. 陈氏法在TATB基PBX蠕变特性研究中的适用性分析[J]. 含能材料,2018,26(7):608 − 613. [ZHAO Long,GAN Haixiao,TANG Wei,et al. Applicability analysis of Chen’s method in the research of TATB-based PBX creep behavior[J]. Chinese Journal of Energetic Materials,2018,26(7):608 − 613. (in Chinese with English abstract)]

    ZHAO Long, GAN Haixiao, TANG Wei, et al. Applicability analysis of Chen’s method in the research of TATB-based PBX creep behavior[J]. Chinese Journal of Energetic Materials, 2018, 26(7): 608 − 613. (in Chinese with English abstract)

    [36]

    LI Bo,ZHANG Guanghua,MA Wei,et al. Damage mechanism of sandstones subject to cyclic freeze-thaw (FT) actions based on high-resolution computed tomography (CT)[J]. Bulletin of Engineering Geology and the Environment,2022,81(9):374. doi: 10.1007/s10064-022-02872-z

    [37]

    贾海梁,刘清秉,项伟,等. 冻融循环作用下饱和砂岩损伤扩展模型研究[J]. 岩石力学与工程学报,2013,32(增刊2):3049 − 3055. [JIA Hailiang,LIU Qingbing,XIANG Wei,et al. Damage evolution model of saturated sandstone under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(Sup 2):3049 − 3055. (in Chinese with English abstract)]

    JIA Hailiang, LIU Qingbing, XIANG Wei, et al. Damage evolution model of saturated sandstone under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Sup 2): 3049 − 3055. (in Chinese with English abstract)

    [38]

    张慧梅,杨更社. 岩石冻融力学实验及损伤扩展特性[J]. 中国矿业大学学报,2011,40(1):140 − 145. [ZHANG Huimei,YANG Gengshe. Freeze-thaw cycling and mechanical experiment and damage propagation characteristics of rock[J]. Journal of China University of Mining & Technology,2011,40(1):140 − 145. (in Chinese with English abstract)]

    ZHANG Huimei, YANG Gengshe. Freeze-thaw cycling and mechanical experiment and damage propagation characteristics of rock[J]. Journal of China University of Mining & Technology, 2011, 40(1): 140 − 145. (in Chinese with English abstract)

    [39]

    沈明荣,谌洪菊. 红砂岩长期强度特性的试验研究[J]. 岩土力学,2011,32(11):3301 − 3305. [SHEN Mingrong,CHEN Hongju. Testing study of long-term strength characteristics of red sandstone[J]. Rock and Soil Mechanics,2011,32(11):3301 − 3305. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2011.11.017

    SHEN Mingrong, CHEN Hongju. Testing study of long-term strength characteristics of red sandstone[J]. Rock and Soil Mechanics, 2011, 32(11): 3301 − 3305. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.11.017

    [40]

    郭长宝,王磊,李任杰,等. 西藏贡觉粉砂质泥岩工程地质特性与蠕变强度研究[J]. 水文地质工程地质,2021,48(5):54 − 64. [GUO Changbao,WANG Lei,LI Renjie,et al. Engineering geology properties and creeping strength characteristics of the silty mudstone in Gongjue County in Xizang of China[J]. Hydrogeology & Engineering Geology,2021,48(5):54 − 64. (in Chinese with English abstract)]

    GUO Changbao, WANG Lei, LI Renjie, et al. Engineering geology properties and creeping strength characteristics of the silty mudstone in Gongjue County in Xizang of China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 54 − 64. (in Chinese with English abstract)

    [41]

    LI Jielin,ZHU Longyin,ZHOU Kepin,et al. Experimental investigation on the effects of ambient freeze–thaw cycling on creep mechanical properties of sandstone under step loading[J]. IEEE Access,2019,7:108513 − 108520. doi: 10.1109/ACCESS.2019.2910323

  • 加载中

(12)

(6)

计量
  • 文章访问数:  152
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2023-09-26
修回日期:  2024-02-01
刊出日期:  2024-11-15

目录