Experimental study on non-darcy flow through layered porous media
-
摘要:
穿越层状多孔介质的非达西渗流多见于人类活动影响下的土壤-地下水系统中。采用自行开发设计的室内渗流实验装置,设置不同粒径的单层多孔介质和相应粒径组合的双层多孔介质,从水力坡降与渗流流速关系、非达西渗流参数和临界雷诺数等方面,探讨了平均粒径、粗细颗粒界面对穿越层状多孔介质非达西渗流特征的影响规律。结果表明:当水流穿越层状多孔介质时,粗细颗粒界面对非达西流渗流特征具有重要影响;作为判断达西流态到非达西流态转换的临界雷诺数,其在单层多孔介质中随多孔介质平均粒径的增大而减小,而当水流穿越层状多孔介质时,临界雷诺数不仅随平均粒径的增大而增大,而且随粗/细颗粒粒径差的减小而增大;受粗细颗粒界面的影响,单层多孔介质中临界雷诺数均低于粗颗粒层与单层多孔介质相同相应粒径组合的双层多孔介质;通过引入非线性分量指数发现,粗细颗粒界面对水流惯性力分量的影响具有一定抑制作用,其抑制性影响程度与粗细颗粒差别大小呈负相关。研究结果对研究穿越层状岩土体的非达西渗流问题具有较好的指导意义。
Abstract:Non-darcy seepage through layered porous media is common in soil-groundwater systems under the influence of human activities. The effect of average particle size and coarse-fine particle interface on the characteristics of non-Darcy porous flow through layered porous media was investigated from the relation between hydraulic gradient and flow velocity, non-Darcy seepage parameters, and critical Reynolds number. The results show that when water flows through layered porous media, the coarse-fine particle interface has an important effect on the characteristics of non-Darcy flow. The critical Reynolds number, which is used to judge the transition from Darcy flow to non-Darcy flow, decreases with the increase of the average particle size in monolayer porous media, but increases with the increase of the average particle size and the decrease of the coarse/fine particle size ratio when water flows through layered porous media. The critical Reynolds number of single-layer porous media is lower than that of the double-layer porous media with the same corresponding particle size due to the coarse-fine particle interface. By introducing the nonlinear component index E, it is found that the coarse/fine particle interface has a certain inhibitory effect on the hydrodynamic inertia force component, and the inhibitory effect degree is negatively correlated with the difference in size of the coarse and fine particles. The results in this study have a good guiding significance for studying non-Darcy seepage through layered rock and soil.
-
-
表 1 实验多孔介质装填组合形式及其相关参数
Table 1. Combination of filled porous media and corresponding parameters
介质类型 装填组合 d1/mm d2/mm $\overline d $ /mmρd1/(g·cm−3) ρd2/(g·cm−3) n1 n2 单层多孔介质 S1 0.70 − 0.70 1.54 − 0.38 − S2 0.61 − 0.61 1.52 − 0.37 − S3 0.43 − 0.43 1.51 − 0.39 − S4 0.32 − 0.32 1.54 − 0.40 − 双层多孔介质 S1-S2 0.70 0.61 0.66 1.56 1.55 0.37 0.36 S1-S3 0.70 0.43 0.57 1.59 1.50 0.36 0.39 S1-S4 0.70 0.32 0.51 1.57 1.53 0.38 0.39 S2-S3 0.61 0.43 0.52 1.54 1.54 0.37 0.38 S2-S4 0.61 0.32 0.47 1.55 1.55 0.36 0.39 注:d1为粗颗粒层粒径;d2为细颗粒层粒径; $ \overline d $ 为装填组合条件下的平均粒径;ρd1为粗颗粒层干密度;ρd2为细颗粒层干密度;n1为粗颗粒层孔隙度;n2为细颗粒层孔隙度。表 2 Forchheimer方程拟合结果
Table 2. Fitting results for Forchheimer equation
介质类型 装填组合 A/(s·cm−1) B/(s2·cm−2) R2 $\overline d $ /mm单层多孔介质 S1 10.69 864.30 0.9968 0.70 S2 22.22 638.63 0.9981 0.61 S3 39.25 419.73 0.9975 0.43 S4 83.39 235.01 0.9996 0.32 双层多孔介质 S1-S2 31.02 129.40 0.9983 0.66 S1-S3 30.36 258.76 0.9992 0.57 S1-S4 36.90 1331.71 0.9992 0.51 S2-S3 37.06 236.88 0.9983 0.52 S2-S4 41.90 576.49 0.9976 0.47 注:A、B为式(5)中的参数;R2为相关系数。 -
[1] 蔡建超,夏宇轩,徐赛,等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报,2020,52(1):208 − 223. [CAI Jianchao,XIA Yuxuan,XU Sai,et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(1):208 − 223. (in Chinese with English abstract)]
CAI Jianchao, XIA Yuxuan, XU Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208 − 223. (in Chinese with English abstract)
[2] 周志芳,窦智. 实验水文地质学[M]. 北京:科学出版社,2015. [ZHOU Zhifang,DOU Zhi. Experimental hydrogeology[M]. Beijing:Science Press,2015. (in Chinese with English abstract)]
ZHOU Zhifang, DOU Zhi. Experimental hydrogeology[M]. Beijing: Science Press, 2015. (in Chinese with English abstract)
[3] LI Zhongxia,WAN Junwei,ZHAN Hongbin,et al. Particle size distribution on Forchheimer flow and transition of flow regimes in porous media[J]. Journal of Hydrology,2019,574:1 − 11. doi: 10.1016/j.jhydrol.2019.04.026
[4] LI Zhongxia,WAN Junwei,HUANG Kun,et al. Effects of particle diameter on flow characteristics in sand columns[J]. International Journal of Heat and Mass Transfer,2017,104:533 − 536. doi: 10.1016/j.ijheatmasstransfer.2016.08.085
[5] 刘军文,施安峰,王晓宏,等. 多孔介质结构对渗流惯性效应的影响规律研究[J]. 力学季刊,2019,40(3):447 − 457. [LIU Junwen,SHI Anfeng,WANG Xiaohong,et al. Study on influences of porous medium structure on inertial effect of seepage flow[J]. Chinese Quarterly of Mechanics,2019,40(3):447 − 457. (in Chinese with English abstract)]
LIU Junwen, SHI Anfeng, WANG Xiaohong, et al. Study on influences of porous medium structure on inertial effect of seepage flow[J]. Chinese Quarterly of Mechanics, 2019, 40(3): 447 − 457. (in Chinese with English abstract)
[6] 李一鸣,文章. 非达西裂隙流对渗透性基岩中流场及溶质羽的影响[J]. 地球科学,2020,45(2):693 − 700. [LI Yiming,WEN Zhang. Impacts of non-darcian flow in the fracture on flow field and solute plumes in a fracture-aquifer system[J]. Earth Science,2020,45(2):693 − 700. (in Chinese with English abstract)]
LI Yiming, WEN Zhang. Impacts of non-darcian flow in the fracture on flow field and solute plumes in a fracture-aquifer system[J]. Earth Science, 2020, 45(2): 693 − 700. (in Chinese with English abstract)
[7] YIN Peijie,ZHAO Can,MA Jianjun,et al. Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique[J]. International Journal of Rock Mechanics and Mining Sciences,2020,129:104293. doi: 10.1016/j.ijrmms.2020.104293
[8] QIAN Jiazhong,CHEN Zhou,ZHAN Hongbin,et al. Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures:A check of local cubic law[J]. Hydrological Processes,2011,25(4):614 − 622. doi: 10.1002/hyp.7849
[9] MULJADI B P,BLUNT M J,RAEINI A Q,et al. The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation[J]. Advances in Water Resources,2016,95:329 − 340. doi: 10.1016/j.advwatres.2015.05.019
[10] QIAN Jiazhong,ZHAN Hongbin,ZHAO Weidong,et al. Experimental study of turbulent unconfined groundwater flow in a single fracture[J]. Journal of Hydrology,2005,311(1/2/3/4):134 − 142.
[11] DOU Zhi,SLEEP B,ZHAN Hongbin,et al. Multiscale roughness influence on conservative solute transport in self-affine fractures[J]. International Journal of Heat and Mass Transfer,2019,133:606 − 618. doi: 10.1016/j.ijheatmasstransfer.2018.12.141
[12] ZHANG Shuai,QIAO Weiguo,WU Yue,et al. Experimental study on seepage characteristics of microfracture with different aperture[J]. Scientific Reports,2020,10(1):5452. doi: 10.1038/s41598-020-62350-y
[13] TRYKOZKO A,PESZYNSKA M,DOHNALIK M. Modeling non-Darcy flows in realistic pore-scale proppant geometries[J]. Computers and Geotechnics,2016,71:352 − 360. doi: 10.1016/j.compgeo.2015.08.011
[14] ZENG Zhengwen,GRIGG R. A criterion for non-Darcy flow in porous media[J]. Transport in Porous Media,2006,63(1):57 − 69. doi: 10.1007/s11242-005-2720-3
[15] HUANG K,WAN J W,CHEN C X,et al. Experimental investigation on water flow in cubic arrays of spheres[J]. Journal of Hydrology,2013,492:61 − 68. doi: 10.1016/j.jhydrol.2013.03.039
[16] 姚池,邵玉龙,杨建华,等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报,2020,42(6):1050 − 1058. [YAO Chi,SHAO Yulong,YANG Jianhua,et al. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1050 − 1058. (in Chinese with English abstract)]
YAO Chi, SHAO Yulong, YANG Jianhua, et al. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050 − 1058. (in Chinese with English abstract)
[17] ZHOU Jiaqing,HU Shaohua,FANG Shu,et al. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:202 − 218. doi: 10.1016/j.ijrmms.2015.09.027
[18] JAVADI M,SHARIFZADEH M,SHAHRIAR K,et al. Critical Reynolds number for nonlinear flow through rough-walled fractures:The role of shear processes[J]. Water Resources Research,2014,50(2):1789 − 1804. doi: 10.1002/2013WR014610
[19] ZIMMERMAN R W,AL-YAARUBI A,PAIN C C,et al. Non-linear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:163 − 169. doi: 10.1016/j.ijrmms.2004.03.036
[20] PIETLICKI R,HARDEN I. Inertial model of flow through porous media[J]. The European Physical Journal B,1996,237:433 − 468.
-