考虑颗粒形态的滑坡体运移特征研究

韩长玉, 陈文超, 张敏, 金莉, 王喆, 杨振兴. 考虑颗粒形态的滑坡体运移特征研究[J]. 水文地质工程地质, 2025, 52(3): 234-244. doi: 10.16030/j.cnki.issn.1000-3665.202310021
引用本文: 韩长玉, 陈文超, 张敏, 金莉, 王喆, 杨振兴. 考虑颗粒形态的滑坡体运移特征研究[J]. 水文地质工程地质, 2025, 52(3): 234-244. doi: 10.16030/j.cnki.issn.1000-3665.202310021
HAN Changyu, CHEN Wenchao, ZHANG Min, JIN Li, WANG Zhe, YANG Zhenxing. Migration characteristics of landslide considering particle morphology[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 234-244. doi: 10.16030/j.cnki.issn.1000-3665.202310021
Citation: HAN Changyu, CHEN Wenchao, ZHANG Min, JIN Li, WANG Zhe, YANG Zhenxing. Migration characteristics of landslide considering particle morphology[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 234-244. doi: 10.16030/j.cnki.issn.1000-3665.202310021

考虑颗粒形态的滑坡体运移特征研究

  • 基金项目: 国家自然科学基金项目(42307243);河南省科技攻关项目(232102321102);河南省教育厅项目(16A560002);浙江省科技计划项目(2023SJZC02);河南省高等学校重点科研项目(25B560010)
详细信息
    作者简介: 韩长玉(1979—),男,博士,副教授,主要从事岩土工程方面的研究工作。E-mail:897563866@qq.com
    通讯作者: 张敏(1988—),女,博士,副教授,主要从事复杂工程条件下边坡失稳机理。E-mail:minzhang@henu.edu.cn
  • 中图分类号: TU43;P642.22

Migration characteristics of landslide considering particle morphology

More Information
  • 岩土材料的颗粒形态对评估边坡稳定性和滑坡运移范围的准确性至关重要,但目前颗粒形态对大尺度边坡相关问题的影响研究尚不明确。为探究颗粒形态与边坡稳定性及滑坡体运移特征的关系,基于实际工程滑坡,采用颗粒离散单元法,构建不同颗粒形态构成的二维边坡。使用球形度和棱角度两个颗粒形态参数分别反映颗粒的整体轮廓特征和棱角数目,研究粒径缩放和颗粒形态对边坡稳定系数的影响。通过强度折减法使边坡破坏,进一步分析滑坡体的运移特征。研究结果表明:对于工程尺度滑坡,粒径缩放对边坡稳定系数预测有一定的影响阈值;颗粒球形度与边坡稳定系数成反比,棱角度与边坡稳定系数成正比,且颗粒球形度与滑坡体的平均滑动速率成正比;滑坡体运移范围受颗粒形态影响,颗粒球形度越高,运移范围越大。研究结果进一步揭示,颗粒形态导致的能量耗散特征差异,是滑坡体运移距离与堆积状态变化的主要内因。该研究可为滑坡致灾范围预测和防灾减灾工程提供参考。

  • 加载中
  • 图 1  5种典型颗粒形态示意图及相关参数

    Figure 1. 

    图 2  建模流程图

    Figure 2. 

    图 3  不同颗粒粒径下边坡稳定系数

    Figure 3. 

    图 4  边坡数值计算模型(工况1)

    Figure 4. 

    图 5  研究递进关系图

    Figure 5. 

    图 6  各工况颗粒球形度、棱角度对应的稳定系数

    Figure 6. 

    图 7  颗粒球形度为1(圆形)时边坡各阶段颗粒位移云图

    Figure 7. 

    图 8  颗粒球形度为0.886(正四边形)时滑坡前期坡脚处颗粒位移云图

    Figure 8. 

    图 9  颗粒球形度为0.646(椭圆形)时滑体前端刮削示意图

    Figure 9. 

    图 10  各工况特征颗粒平均速率时程曲线

    Figure 10. 

    图 11  各球形度颗粒边坡滑坡后颗粒位移图

    Figure 11. 

    图 12  各球形度边坡对应的滑坡能量转化曲线

    Figure 12. 

    表 1  5种典型颗粒形态系数统计表

    Table 1.  Statistical values of 5 typical particle morphology coefficients

    颗粒形态球形度棱角度
    圆形1.0001.000
    正五边形0.9301.143
    正四边形0.8861.181
    正三角形0.7781.454
    椭圆形0.6461.000
    下载: 导出CSV

    表 2  数值模拟的细观参数

    Table 2.  Microscopic parameters for numerical simulations

    类型 细观参数 数值
    颗粒属性 颗粒半径比(Rmax/Rmin 1.66
    颗粒密度/(kg·m−3 1 950
    线性接触模量/MPa 15
    法/切向刚度比 1
    摩擦系数 0.325
    平行黏结参数 法向黏结强度/MPa 20
    切向黏结强度/MPa 10
    抗拉强度/MPa 0.2
    内聚力/MPa 0.4
    下载: 导出CSV
  • [1]

    殷跃平,高少华. 高位远程地质灾害研究:回顾与展望[J]. 中国地质灾害与防治学报,2024,35(1):1 − 18. [YIN Yueping,GAO Shaohua. Research on high-altitude and long-runout rockslides:Review and prospects[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):1 − 18. (in Chinese with English abstract)]

    YIN Yueping, GAO Shaohua. Research on high-altitude and long-runout rockslides: Review and prospects[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 1 − 18. (in Chinese with English abstract)

    [2]

    GUO Deping,HAMADA M,HE Chuan,et al. An empirical model for landslide travel distance prediction in Wenchuan earthquake area[J]. Landslides,2014,11(2):281 − 291. doi: 10.1007/s10346-013-0444-y

    [3]

    王震宇,孟陆波. 滑坡预报的多元回归分析方法[J]. 中国地质灾害与防治学报,2003,14(3):21 − 23. [WANG Zhenyu,MENG Lubo. The multivariate regression analysis method for landslide prediction[J]. The Chinese Journal of Geological Hazard and Control,2003,14(3):21 − 23. (in Chinese with English abstract)]

    WANG Zhenyu, MENG Lubo. The multivariate regression analysis method for landslide prediction[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(3): 21 − 23. (in Chinese with English abstract)

    [4]

    唐然,许强,吴斌,等. 平推式滑坡运动距离计算模型[J]. 岩土力学,2018,39(3):1009 − 1019. [TANG Ran,XU Qiang,WU Bin,et al. Method of sliding distance calculation for translational landslides[J]. Rock and Soil Mechanics,2018,39(3):1009 − 1019. (in Chinese with English abstract)]

    TANG Ran, XU Qiang, WU Bin, et al. Method of sliding distance calculation for translational landslides[J]. Rock and Soil Mechanics, 2018, 39(3): 1009 − 1019. (in Chinese with English abstract)

    [5]

    SU Xing,WEI Wanhong,YE Weilin,et al. Predicting landslide sliding distance based on energy dissipation and mass point kinematics[J]. Natural Hazards,2019,96(3):1367 − 1385. doi: 10.1007/s11069-019-03618-z

    [6]

    MAO Jia,LIU Xunnan,ZHANG Chong,et al. Runout prediction and deposit characteristics investigation by the distance potential-based discrete element method:The 2018 Baige landslides,Jinsha River,China[J]. Landslides,2021,18(1):235 − 249. doi: 10.1007/s10346-020-01501-8

    [7]

    王高峰,李浩,田运涛,等. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测[J]. 岩石力学与工程学报,2023,42(4):1003 − 1018. [WANG Gaofeng,LI Hao,TIAN Yuntao,et al. Study on the formation mechanism and risk prediction of high-level accumulation landslides in Bailongjiang River Basin,Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(4):1003 − 1018. (in Chinese with English abstract)]

    WANG Gaofeng, LI Hao, TIAN Yuntao, et al. Study on the formation mechanism and risk prediction of high-level accumulation landslides in Bailongjiang River Basin, Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 1003 − 1018. (in Chinese with English abstract)

    [8]

    WANG Jian,HU Xinli,ZHENG Hongchao,et al. Energy transfer mechanisms of mobility alteration in landslide-debris flows controlled by entrainment and runout-path terrain:A case study[J]. Landslides,2024,21(6):1189 − 1206. doi: 10.1007/s10346-024-02221-z

    [9]

    岳中琦. 梅大高速公路路基边坡失稳条件与滑坡机理初探[J]. 中国地质灾害与防治学报,2024,35(4):1 − 12. [YUE Zhongqi. Study on the instability condition and landslide mechanism of subgrade slope in Mei–Da Expressway[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):1 − 12.(in Chinese with English abstract)]

    YUE Zhongqi. Study on the instability condition and landslide mechanism of subgrade slope in Mei–Da Expressway[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 1 − 12.(in Chinese with English abstract)

    [10]

    MANZELLA I,LABIOUSE V. Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches[J]. Engineering Geology,2009,109(1/2):146 − 158.

    [11]

    YANG Qingqing,CAI Fei,UGAI K,et al. Some factors affecting mass-front velocity of rapid dry granular flows in a large flume[J]. Engineering Geology,2011,122(3/4):249 − 260.

    [12]

    龙艳梅,宋章,王玉峰,等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质,2022,49(1):126 − 136. [LONG Yanmei,SONG Zhang,WANG Yufeng,et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology,2022,49(1):126 − 136. (in Chinese with English abstract)]

    LONG Yanmei, SONG Zhang, WANG Yufeng, et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 126 − 136. (in Chinese with English abstract)

    [13]

    雷先顺,谢沃,卢坤林,等. 无黏性土滑动和堆积特性的模型试验研究[J]. 岩土工程学报,2016,38(2):226 − 236. [LEI Xianshun,XIE Wo,LU Kunlin,et al. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering,2016,38(2):226 − 236. (in Chinese with English abstract)]

    LEI Xianshun, XIE Wo, LU Kunlin, et al. Model tests of sliding and accumulation characteristics of cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 226 − 236. (in Chinese with English abstract)

    [14]

    HAN Changyu, WANG Jianhua, XIA Xiaohe, et al. Limit analysis for local and overall stability of a slurry trench in cohesive soil[J]. International Journal of Geomechanics,2015,15(5):06014026.

    [15]

    HAN Changyu, CHEN Jinjian, XIA Xiaohe, et al. Three-dimensional stability analysis of anisotropic and non-homogeneous slopes using limit analysis[J]. Journal of Central South University,2014,21(3):1142 − 1147.

    [16]

    HAN Changyu, HAO Yidan, LIU Kun, et al. Analysis of influencing factors of rainfall infiltration slope sensitivity based on grey relational analysis[J]. Polish Journal of Environmental Studies,2025,34(1):671 − 679.

    [17]

    汪华斌,李建梅,金怡轩,等. 降雨诱发边坡破坏数值模拟两个关键问题的解决方法[J]. 岩土力学,2019,40(2):777 − 784. [WANG Huabin,LI Jianmei,JIN Yixuan,et al. The numerical methods for two key problems in rainfall-induced slope failure[J]. Rock and Soil Mechanics,2019,40(2):777 − 784. (in Chinese with English abstract)]

    WANG Huabin, LI Jianmei, JIN Yixuan, et al. The numerical methods for two key problems in rainfall-induced slope failure[J]. Rock and Soil Mechanics, 2019, 40(2): 777 − 784. (in Chinese with English abstract)

    [18]

    张恩铭,程谦恭,林棋文,等. 岩体结构对岩质滑坡运动过程和堆积特征的影响研究[J]. 水文地质工程地质,2022,49(3):125 − 135. [ZHANG Enming,CHENG Qiangong,LIN Qiwen,et al. A study of the influence of rock mass structure on the propagation processes and deposit characteristics of rockslides[J]. Hydrogeology & Engineering Geology,2022,49(3):125 − 135. (in Chinese with English abstract)]

    ZHANG Enming, CHENG Qiangong, LIN Qiwen, et al. A study of the influence of rock mass structure on the propagation processes and deposit characteristics of rockslides[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 125 − 135. (in Chinese with English abstract)

    [19]

    陶志刚,张海江,尹利洁,等. 基于FDEM的戒台寺古滑体开裂破坏过程数值模拟[J]. 水文地质工程地质,2017,44(3):105 − 112. [TAO Zhigang,ZHANG Haijiang,YIN Lijie,et al. Numerical modeling of cracking for the Jietai Temple ancient landslide with the combined finite-discrete element method[J]. Hydrogeology & Engineering Geology,2017,44(3):105 − 112. (in Chinese with English abstract)]

    TAO Zhigang, ZHANG Haijiang, YIN Lijie, et al. Numerical modeling of cracking for the Jietai Temple ancient landslide with the combined finite-discrete element method[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 105 − 112. (in Chinese with English abstract)

    [20]

    张家勇,邹银先,杨大山. 基于PFC3D的鱼鳅坡滑坡运动过程分析[J]. 中国地质灾害与防治学报,2021,32(4):33 − 39. [ZHANG Jiayong,ZOU Yinxian,YANG Dashan. Analysis of Yuqiupo landslide motion process based on PFC3D[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):33 − 39. (in Chinese with English abstract)]

    ZHANG Jiayong, ZOU Yinxian, YANG Dashan. Analysis of Yuqiupo landslide motion process based on PFC3D[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 33 − 39. (in Chinese with English abstract)

    [21]

    BANTON J,VILLARD P,JONGMANS D,et al. Two-dimensional discrete element models of debris avalanches:Parameterization and the reproducibility of experimental results[J]. Journal of Geophysical Research:Earth Surface,2009,114:F04013.

    [22]

    MEAD S R,CLEARY P W. Validation of DEM prediction for granular avalanches on irregular terrain[J]. Journal of Geophysical Research:Earth Surface,2015,120(9):1724 − 1742. doi: 10.1002/2014JF003331

    [23]

    ZHANG Yulong,SHAO Jianfu,LIU Zaobao,et al. Numerical study on the dynamic behavior of rock avalanche:Influence of cluster shape,size and gradation[J]. Acta Geotechnica,2023,18(1):299 − 318. doi: 10.1007/s11440-022-01537-1

    [24]

    刘清秉,项伟,BUDHU M,等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学,2011,32(增刊1):190 − 197. [LIU Qingbing,XIANG Wei,BUDHU M,et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics,2011,32(Sup1):190 − 197. (in Chinese with English abstract)]

    LIU Qingbing, XIANG Wei, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 2011, 32(Sup1): 190 − 197. (in Chinese with English abstract)

    [25]

    HENTSCHEL M L,PAGE N W. Selection of descriptors for particle shape characterization[J]. Particle & Particle Systems Characterization,2003,20(1):25 − 38.

    [26]

    WADELL H. Volume,shape,and roundness of rock particles[J]. The Journal of Geology,1932,40(5):443 − 451. doi: 10.1086/623964

    [27]

    WADELL H. Sphericity and roundness of rock particles[J]. The Journal of Geology,1933,41(3):310 − 331. doi: 10.1086/624040

    [28]

    ALTUHAFI F,O'SULLIVAN C,CAVARRETTA I. Analysis of an image-based method to quantify the size and shape of sand particles[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(8):1290 − 1307. doi: 10.1061/(ASCE)GT.1943-5606.0000855

    [29]

    ZHAO Yu,DUAN Yihang,ZHU Lingli,et al. Characterization of coarse aggregate morphology and its effect on rheological and mechanical properties of fresh concrete[J]. Construction and Building Materials,2021,286:122940. doi: 10.1016/j.conbuildmat.2021.122940

    [30]

    赵尚毅,郑颖人,时卫民,等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报,2002(3):343 − 346. [ZHAO Shangyi,ZHENG Yingren,SHI Weimin,et al. Finding the stability safety factor of slope by finite element strength reduction method[J]. Chinese Journal of Geotechnical Engineering,2002(3):343 − 346. (in Chinese with English abstract)]

    ZHAO Shangyi, ZHENG Yingren, SHI Weimin, et al. Finding the stability safety factor of slope by finite element strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2002(3): 343 − 346. (in Chinese with English abstract)

    [31]

    周健,王家全,曾远,等. 颗粒流强度折减法和重力增加法的边坡安全系数研究[J]. 岩土力学,2009,30(6):1549 − 1554. [ZHOU Jian,WANG Jiaquan,ZENG Yuan,et al. Slope safety factor by methods of particle flow code strength reduction and gravity increase[J]. Rock and Soil Mechanics,2009,30(6):1549 − 1554. (in Chinese with English abstract)]

    ZHOU Jian, WANG Jiaquan, ZENG Yuan, et al. Slope safety factor by methods of particle flow code strength reduction and gravity increase[J]. Rock and Soil Mechanics, 2009, 30(6): 1549 − 1554. (in Chinese with English abstract)

    [32]

    陈晓,石崇,杨俊雄. 土石混合体边坡细观特征对滑面形成影响研究[J]. 工程地质学报,2020,28(4):813 − 821. [CHEN Xiao,SHI Chong,YANG Junxiong. Effect of micro characteristics of soil-rock mixture slope on formation of sliding surface[J]. Journal of Engineering Geology,2020,28(4):813 − 821. (in Chinese with English abstract)]

    CHEN Xiao, SHI Chong, YANG Junxiong. Effect of micro characteristics of soil-rock mixture slope on formation of sliding surface[J]. Journal of Engineering Geology, 2020, 28(4): 813 − 821. (in Chinese with English abstract)

    [33]

    王培涛,杨天鸿,朱立凯,等. 基于PFC2D岩质边坡稳定性分析的强度折减法[J]. 东北大学学报(自然科学版),2013,34(1):127 − 130. [WANG Peitao,YANG Tianhong,ZHU Likai,et al. Strength reduction method for rock slope stability analysis based on PFC2D[J]. Journal of Northeastern University(Natural Science),2013,34(1):127 − 130. (in Chinese with English abstract)]

    WANG Peitao, YANG Tianhong, ZHU Likai, et al. Strength reduction method for rock slope stability analysis based on PFC2D[J]. Journal of Northeastern University(Natural Science), 2013, 34(1): 127 − 130. (in Chinese with English abstract)

    [34]

    汪儒鸿,周海清,彭国园. 土体结构性对突发性边坡失稳的控制作用[J]. 中国地质灾害与防治学报,2018,29(5):20 − 25. [WANG Ruhong,ZHOU Haiqing,PENG Guoyuan. Analysis of the sudden slope instability controlled by the soil structure[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):20 − 25. (in Chinese with English abstract)]

    WANG Ruhong, ZHOU Haiqing, PENG Guoyuan. Analysis of the sudden slope instability controlled by the soil structure[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 20 − 25. (in Chinese with English abstract)

    [35]

    曹文,李维朝,唐斌,等. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报,2017,25(2):455 − 462. [CAO Wen,LI Weichao,TANG Bin,et al. PFC study on building of 2d and 3d landslide models[J]. Journal of Engineering Geology,2017,25(2):455 − 462. (in Chinese with English abstract)]

    CAO Wen, LI Weichao, TANG Bin, et al. PFC study on building of 2d and 3d landslide models[J]. Journal of Engineering Geology, 2017, 25(2): 455 − 462. (in Chinese with English abstract)

    [36]

    POTYONDY D O,CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329 − 1364. doi: 10.1016/j.ijrmms.2004.09.011

    [37]

    胡新丽,唐辉明,李长冬,等. 基于参数反演的保扎滑坡变形破坏机理研究[J]. 工程地质学报,2011,19(6):795 − 801. [HU Xinli,TANG Huiming,LI Changdong,et al. Deformation mechanism of Baozha landslide with parametric back analysis[J]. Journal of Engineering Geology,2011,19(6):795 − 801. (in Chinese with English abstract)]

    HU Xinli, TANG Huiming, LI Changdong, et al. Deformation mechanism of Baozha landslide with parametric back analysis[J]. Journal of Engineering Geology, 2011, 19(6): 795 − 801. (in Chinese with English abstract)

    [38]

    屈昊. 陕西西镇高速公路杨家河滑坡稳定性评价及失稳过程分析[D]. 西安:西安科技大学,2020. [QU Hao. The stable evaluation of the stability of and the analysis of instability on Yangjiahe Landslide beside the highway of Xizhen,Shaanxi Province[D]. Xi’an:Xi’an University of Science and Technology,2020. (in Chinese with English abstract)]

    QU Hao. The stable evaluation of the stability of and the analysis of instability on Yangjiahe Landslide beside the highway of Xizhen, Shaanxi Province[D]. Xi’an: Xi’an University of Science and Technology, 2020. (in Chinese with English abstract)

    [39]

    浙江省第七地质大队. 丽水市莲都区雅溪镇里东村滑坡勘查报告[R]. 丽水:浙江省第七地质大队,2016. [The Seventh Geological Brigade of Zhejiang Province. Landslide investigation report of Lidong Village,Yaxi Town,Liandu District,Lishui City[R]. Lishui:The Seventh Geological Brigade of Zhejiang Province,2016. (in Chinese)]

    The Seventh Geological Brigade of Zhejiang Province. Landslide investigation report of Lidong Village, Yaxi Town, Liandu District, Lishui City[R]. Lishui: The Seventh Geological Brigade of Zhejiang Province, 2016. (in Chinese)

    [40]

    张翀,舒赣平. 颗粒形状对颗粒流模拟双轴压缩试验的影响研究[J]. 岩土工程学报,2009,31(8):1281 − 1286. [ZHANG Chong,SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering,2009,31(8):1281 − 1286. (in Chinese with English abstract)]

    ZHANG Chong, SHU Ganping. Effect of particle shape on biaxial tests simulated by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1281 − 1286. (in Chinese with English abstract)

    [41]

    WU Mengmeng,XIONG Linghong,WANG Jianfeng. DEM study on effect of particle roundness on biaxial shearing of sand[J]. Underground Space,2021,6(6):678 − 694. doi: 10.1016/j.undsp.2021.03.006

    [42]

    张旭辉,龚晓南,徐日庆. 边坡稳定影响因素敏感性的正交法计算分析[J]. 中国公路学报,2003,16(1):36 − 39. [ZHANG Xuhui,GONG Xiaonan,XU Riqing. Orthogonality analysis method of sensibility on factor of slope stability[J]. China Journal of Highway and Transport,2003,16(1):36 − 39. (in Chinese with English abstract)]

    ZHANG Xuhui, GONG Xiaonan, XU Riqing. Orthogonality analysis method of sensibility on factor of slope stability[J]. China Journal of Highway and Transport, 2003, 16(1): 36 − 39. (in Chinese with English abstract)

    [43]

    CLEARY P W. Industrial particle flow modelling using discrete element method[J]. Engineering Computations,2009,26(6):698 − 743. doi: 10.1108/02644400910975487

    [44]

    孔亮,彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报,2011,30(10):2112 − 2119. [KONG Liang,PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2112 − 2119. (in Chinese with English abstract)]

    KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112 − 2119. (in Chinese with English abstract)

    [45]

    IVERSON R M,LOGAN M,DENLINGER R P. Granular avalanches across irregular three-dimensional terrain:2. Experimental tests[J]. Journal of Geophysical Research:Earth Surface,2004,109(F1):F01015.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  11
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-10-23
修回日期:  2024-04-02
录用日期:  2024-04-03
刊出日期:  2025-05-15

目录