-
摘要:
劈裂强度是影响土质边坡稳定性的重要因素之一。由于不同土体的水敏性不同,使得不同含水率下土体的强度和变形存在差异。为探讨不同初始含水率条件下膨胀土和改性土的劈裂强度特性和裂隙演化机制差异,采用粒子图像测速(particle image velocimetry,PIV)技术对南阳市南水北调中线工程高填方渠堤中的膨胀土和改性土进行了一系列劈裂试验,试验结果表明:(1)膨胀土和改性土的荷载-位移曲线具有相同阶段,但不同含水率下的阶段特征有所差异;(2)膨胀土试样的临界含水率和峰值荷载均小于改性土试样,但2种土体的峰值荷载随着含水率的增加呈先增加后减小的变化规律,具有单峰值特征;(3)由位移矢量场可知,膨胀土和改性土试样劈裂破坏时均是主裂隙呈径向垂直,次生裂隙发育,不同初始含水率的膨胀土和改性土试样的裂隙发育形态基本一致。研究结果对类似工程的稳定性防治具有借鉴意义。
Abstract:The splitting strength is one of the important factors affecting the stability of soil slope. Due to the different water sensitivity of different soils, the strength and deformation of soils under different water contents are different. To investigate the splitting strength characteristics and fracture evolution mechanism of expansive soil and modified soil under different initial water content, particle image velocimetry (PIV) technology was used to conduct a series of splitting tests on expansive soil and modified soil in the high fill canal embankment of the middle route of the South-to-North Water Transfer project in Nanyang City. The test results show that the load-displacement curves of expansive soil and modified soil have the same stage, but the stage characteristics are different under different water contents. The critical water content and peak load of the expanded soil sample are smaller than that of the modified soil sample, but the peak load of the two soils increases first and then decreases with the increase of water content, and has the characteristics of single peak. According to the displacement vector field, it can be seen that both expansive soil and modified soil samples have radial and vertical main cracks and secondary cracks develop during splitting and failure. The crack development morphology of expansive soil and modified soil samples with different initial water contents is basically the same. The research results in this study have reference significance for the stability control of similar projects.
-
-
表 1 土样基本物理性质指标
Table 1. Basic physical property index of soil
土样 液限
/%塑限
/%塑性
指数最优含
水率/%最大干密度
/(g·cm−3)膨胀土 46.5 25.4 21.1 23.3 1.60 改性土 45.0 26.5 18.5 24.8 1.55 -
[1] 任海平,段春建,张铁财,等. 南水北调中线总干渠悬浮物时空分布及其与浮游植物的关系[J]. 长江流域资源与环境,2022,31(11):2473 − 2480. [REN Haiping,DUAN Chunjian,ZHANG Tiecai,et al. Spatial distribution and variation of suspended solids in the main channel of the middle route of the south-to-north water diversion project and relationships with phytoplankton community[J]. Resources and Environment in the Yangtze Basin,2022,31(11):2473 − 2480. (in Chinese with English abstract)]
REN Haiping, DUAN Chunjian, ZHANG Tiecai, et al. Spatial distribution and variation of suspended solids in the main channel of the middle route of the south-to-north water diversion project and relationships with phytoplankton community[J]. Resources and Environment in the Yangtze Basin, 2022, 31(11): 2473 − 2480. (in Chinese with English abstract)
[2] 李春意,贾彭真,赵海良,等. 南水北调中线渠首深挖方膨胀土渠段边坡形变时空演化规律分析[J]. 河南理工大学学报(自然科学版),2023,42(6):76 − 85. [LI Chunyi,JIA Pengzhen,ZHAO Hailiang,et al. Spatiotemporal evolution of slope deformation law of deeply-excavated canal over the middle route of South-to-North Water Diversion Project[J]. Journal of Henan Polytechnic University (Natural Science),2023,42(6):76 − 85. (in Chinese with English abstract)]
LI Chunyi, JIA Pengzhen, ZHAO Hailiang, et al. Spatiotemporal evolution of slope deformation law of deeply-excavated canal over the middle route of South-to-North Water Diversion Project[J]. Journal of Henan Polytechnic University (Natural Science), 2023, 42(6): 76 − 85. (in Chinese with English abstract)
[3] 李斌,郝继锋,鞠远江,等. 渠坡非饱和膨胀土含水率与强度关系试验研究[J]. 水文地质工程地质,2022,49(5):129 − 136. [LI Bin,HAO Jifeng,JU Yuanjiang,et al. An experimental study of the relationship between water content and strength of unsaturated expansive soil on canal slope[J]. Hydrogeology & Engineering Geology,2022,49(5):129 − 136. (in Chinese with English abstract)]
LI Bin, HAO Jifeng, JU Yuanjiang, et al. An experimental study of the relationship between water content and strength of unsaturated expansive soil on canal slope[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 129 − 136. (in Chinese with English abstract)
[4] 蔡耀军. 南水北调中线膨胀土渠道工程地质勘察关键技术[Z]. 武汉:湖北省科学技术厅,2016. [Cai Yaojun. Key technology of engineering geological survey of expansion soil channel in middle line of South-to-North Water Transfer project[Z]. Wuhan:Department of Science and Technology of Hubei Province,2016. (in Chinese)]
Cai Yaojun. Key technology of engineering geological survey of expansion soil channel in middle line of South-to-North Water Transfer project[Z]. Wuhan: Department of Science and Technology of Hubei Province, 2016. (in Chinese)
[5] NGUYEN T T,NGUYEN M D,NGUYEN T,et al. Interface shear strength behavior of cement-treated soil under consolidated drained conditions[J]. Buildings,2023,13(7):1626. doi: 10.3390/buildings13071626
[6] 魏洪山,王伟志,徐永福,等. 水泥改良土的拉伸强度特性及其计算方法[J]. 水文地质工程地质,2022,49(6):81 − 89. [WEI Hongshan,WANG Weizhi,XU Yongfu,et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(6):81 − 89. (in Chinese with English abstract)]
WEI Hongshan, WANG Weizhi, XU Yongfu, et al. Tensile strength characteristics and calculation methods of the cement stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 81 − 89. (in Chinese with English abstract)
[7] DING Fei,SONG Lei,YUE Fengtian. Study on mechanical properties of cement-improved frozen soil under uniaxial compression based on discrete element method[J]. Processes,2022,10(2):324. doi: 10.3390/pr10020324
[8] 吴燕开,乔晓龙,李丹丹,等. 干湿循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 西安建筑科技大学学报(自然科学版),2021,53(3):319 − 329. [WU Yankai,QIAO Xiaolong,LI Dandan,et al. Experimental study on expansive soil improved by steel slag powder-cement under dry-wet cycles[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition),2021,53(3):319 − 329. (in Chinese with English abstract)].]
WU Yankai, QIAO Xiaolong, LI Dandan, et al. Experimental study on expansive soil improved by steel slag powder-cement under dry-wet cycles[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2021, 53(3): 319 − 329. (in Chinese with English abstract)].
[9] 易朋莹,林军志,陈涛,等. 斜倾厚层山体弯曲-侧滑机理分析——以重庆武隆庆口滑坡为例[J]. 中国地质灾害与防治学报,2024,35(3):36 − 42. [YI Pengying,LIN Junzhi,CHEN Tao,et al. Mechanism of bending-sideslip of inclined thick bedding slope: A case study of qingkou landslide in Wulong, Chongqing[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):36 − 42. (in Chinese with English abstract)]
YI Pengying, LIN Junzhi, CHEN Tao, et al. Mechanism of bending-sideslip of inclined thick bedding slope: A case study of qingkou landslide in Wulong, Chongqing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 36 − 42. (in Chinese with English abstract)
[10] 姜恒超,李青林,杨志勇,等. 玻璃纤维水泥改良土劈裂抗拉强度试验研究[J]. 铁道科学与工程学报,2019,16(11):2742 − 2747. [JIANG Hengchao,LI Qinglin,YANG Zhiyong,et al. Experimental study on split tensile strength of glass fiber cement improved soil[J]. Journal of Railway Science and Engineering,2019,16(11):2742 − 2747. (in Chinese with English abstract)]
JIANG Hengchao, LI Qinglin, YANG Zhiyong, et al. Experimental study on split tensile strength of glass fiber cement improved soil[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2742 − 2747. (in Chinese with English abstract)
[11] 杨林,刘雨彤,宋玉鑫. 外加剂改性水泥石灰土力学及收缩特性试验研究[J]. 中外公路,2018,38(1):288 − 293. [YANG Lin,LIU Yutong,SONG Yuxin. Experimental study on mechanical properties and shrinkage of cement-lime stabilized soil modified with additives[J]. Journal of China & Foreign Highway,2018,38(1):288 − 293. (in Chinese with English abstract)]
YANG Lin, LIU Yutong, SONG Yuxin. Experimental study on mechanical properties and shrinkage of cement-lime stabilized soil modified with additives[J]. Journal of China & Foreign Highway, 2018, 38(1): 288 − 293. (in Chinese with English abstract)
[12] 贺志彬. 水泥固化剂稳定粉砂土的强度特性试验研究[J]. 山西建筑,2017,43(25):118 − 120. [HE Zhibin. Experimental study on strength properties of silty soil mixed with cement and curing agent[J]. Shanxi Architecture,2017,43(25):118 − 120. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-6825.2017.25.061
HE Zhibin. Experimental study on strength properties of silty soil mixed with cement and curing agent[J]. Shanxi Architecture, 2017, 43(25): 118 − 120. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-6825.2017.25.061
[13] 刘雨彤,杨林. 冻融作用下PPF稳定土力学性能研究[J]. 冰川冻土,2017,39(4):850 − 857. [LIU Yutong,YANG Lin. Study of the mechanical properties of stabilized soil containing PPF under freezing and thawing cycles[J]. Journal of Glaciology and Geocryology,2017,39(4):850 − 857. (in Chinese with English abstract)]
LIU Yutong, YANG Lin. Study of the mechanical properties of stabilized soil containing PPF under freezing and thawing cycles[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 850 − 857. (in Chinese with English abstract)
[14] 张伟清. 纤维与纳米粘土改性石灰土劈裂强度特性研究[J]. 广东土木与建筑,2023,30(7):115 − 118. [ZHANG Weiqing. Splitting strength of fiber and nano-clay modified lime soil characteristic research[J]. Guangdong Architecture Civil Engineering,2023,30(7):115 − 118. (in Chinese with English abstract)]
ZHANG Weiqing. Splitting strength of fiber and nano-clay modified lime soil characteristic research[J]. Guangdong Architecture Civil Engineering, 2023, 30(7): 115 − 118. (in Chinese with English abstract)
[15] 杨博瀚,翁兴中,刘军忠,等. 改性聚丙烯纤维和水泥加固黄土的力学性能[J]. 建筑材料学报,2016,19(4):694 − 701. [YANG Bohan,WENG Xingzhong,LIU Junzhong,et al. Mechanical properties of modified polypropylene fibre reinforced cement stabilized loess[J]. Journal of Building Materials,2016,19(4):694 − 701. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-9629.2016.04.015
YANG Bohan, WENG Xingzhong, LIU Junzhong, et al. Mechanical properties of modified polypropylene fibre reinforced cement stabilized loess[J]. Journal of Building Materials, 2016, 19(4): 694 − 701. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-9629.2016.04.015
[16] 张辉,杨黎,陈永辉,等. 连云港海相固化软土抗拉强度特性及预测方法[J]. 水运工程,2023(6):192 − 198. [ZHANG Hui,YANG Li,CHEN Yonghui,et al. Tensile strength characteristics and prediction method of solidified marine soft soil in Lianyungang[J]. Port & Waterway Engineering,2023(6):192 − 198. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-4972.2023.06.033
ZHANG Hui, YANG Li, CHEN Yonghui, et al. Tensile strength characteristics and prediction method of solidified marine soft soil in Lianyungang[J]. Port & Waterway Engineering, 2023(6): 192 − 198. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4972.2023.06.033
[17] 常记,杨晓峰,姚兆明. 基于PIV技术的水平桩土相互作用试验研究[J]. 宁夏工程技术,2023,22(1):7 − 11. [CHANG Ji,YANG Xiaofeng,YAO Zhaoming. Experimental study of soil-pile interaction of laterally loaded vertical piles based on PIV technique[J]. Ningxia Engineering Technology,2023,22(1):7 − 11. (in Chinese with English abstract)]
CHANG Ji, YANG Xiaofeng, YAO Zhaoming. Experimental study of soil-pile interaction of laterally loaded vertical piles based on PIV technique[J]. Ningxia Engineering Technology, 2023, 22(1): 7 − 11. (in Chinese with English abstract)
[18] 张昕,董浩,徐迎迎,等. 竖向循环荷载作用下砂土中单桩承载特性模型试验研究[J]. 岩土力学,2023,44(3):673 − 684. [ZHANG Xin,DONG Hao,XU Yingying,et al. Experimental study on the bearing capacity of piles in sand under cyclic loading[J]. Rock and Soil Mechanics,2023,44(3):673 − 684. (in Chinese with English abstract)]
ZHANG Xin, DONG Hao, XU Yingying, et al. Experimental study on the bearing capacity of piles in sand under cyclic loading[J]. Rock and Soil Mechanics, 2023, 44(3): 673 − 684. (in Chinese with English abstract)
[19] 杨晓峰,李伟,姚兆明. 基于PIV技术的冲刷条件下桩-土水平变形机制[J]. 长江科学院院报,2023,40(2):102 − 108. [YANG Xiaofeng,LI Wei,YAO Zhaoming. PIV-based research on horizontal deformation mechanism of pile-soil under scour condition[J]. Journal of Changjiang River Scientific Research Institute,2023,40(2):102 − 108. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20210980
YANG Xiaofeng, LI Wei, YAO Zhaoming. PIV-based research on horizontal deformation mechanism of pile-soil under scour condition[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 102 − 108. (in Chinese with English abstract) doi: 10.11988/ckyyb.20210980
[20] 王亚超,窦斌,喻勇,等. 不同冷却方式下高温花岗岩巴西劈裂及声发射特性试验研究[J]. 地质科技通报,2022,41(3):200 − 207. [WANG Yachao,DOU Bin,YU Yong,et al. Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods[J]. Bulletin of Geological Science and Technology,2022,41(3):200 − 207. (in Chinese with English abstract)]
WANG Yachao, DOU Bin, YU Yong, et al. Experimental study on Brazilian split test and acoustic emission characteristics of high temperature granite under different cooling methods[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 200 − 207. (in Chinese with English abstract)
[21] 张俊然,翟天雅. 基于PIV劈裂试验膨润土抗拉强度公式的修正[J]. 土木工程学报,2023,56(4):119 − 128. [ZHANG Junran,ZHAI Tianya. Modification of bentonite tensile strength formula based on PIV splitting test[J]. China Civil Engineering Journal,2023,56(4):119 − 128. (in Chinese with English abstract)]
ZHANG Junran, ZHAI Tianya. Modification of bentonite tensile strength formula based on PIV splitting test[J]. China Civil Engineering Journal, 2023, 56(4): 119 − 128. (in Chinese with English abstract)
[22] 张俊然,王俪锦,姜彤,等. 基于PIV技术的高吸力下压实膨润土径向劈裂试验研究[J]. 应用基础与工程科学学报,2021,29(3):691 − 701. [ZHANG Junran,WANG Lijin,JIANG Tong,et al. Diametric splitting tests on compacted bentonite at different high suctions based on PIV technique[J]. Journal of Basic Science and Engineering,2021,29(3):691 − 701. (in Chinese with English abstract)]
ZHANG Junran, WANG Lijin, JIANG Tong, et al. Diametric splitting tests on compacted bentonite at different high suctions based on PIV technique[J]. Journal of Basic Science and Engineering, 2021, 29(3): 691 − 701. (in Chinese with English abstract)
[23] 黄伟,项伟,王菁莪,等. 基于变形数字图像处理的土体拉伸试验装置的研发与应用[J]. 岩土力学,2018,39(9):3486 − 3494. [HUANG Wei,XIANG Wei,WANG Jing’e,et al. Development and application of digital image processing technology based soil tensile apparatus[J]. Rock and Soil Mechanics,2018,39(9):3486 − 3494. (in Chinese with English abstract)]
HUANG Wei, XIANG Wei, WANG Jing’e, et al. Development and application of digital image processing technology based soil tensile apparatus[J]. Rock and Soil Mechanics, 2018, 39(9): 3486 − 3494. (in Chinese with English abstract)
[24] 中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[25] 姜彤,翟天雅,张俊然,等. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学,2021,42(8):2120 − 2126. [JIANG Tong,ZHAI Tianya,ZHANG Junran,et al. Diametric splitting tests on loess based on particle image velocimetry technique[J]. Rock and Soil Mechanics,2021,42(8):2120 − 2126. (in Chinese with English abstract)]
JIANG Tong, ZHAI Tianya, ZHANG Junran, et al. Diametric splitting tests on loess based on particle image velocimetry technique[J]. Rock and Soil Mechanics, 2021, 42(8): 2120 − 2126. (in Chinese with English abstract)
[26] 汤连生,桑海涛,侯涛,等. 花岗岩残积土抗拉强度试验研究[J]. 中山大学学报(自然科学版),2014,53(6):98 − 105. [TANG Liansheng,SANG Haitao,HOU Tao,et al. Experimental study on tensile strength of granite residual soil[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2014,53(6):98 − 105. (in Chinese with English abstract)]
TANG Liansheng, SANG Haitao, HOU Tao, et al. Experimental study on tensile strength of granite residual soil[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(6): 98 − 105. (in Chinese with English abstract)
[27] 刘加冬,路洪斌,殷宗泽. 水泥改良膨胀土的裂隙演化规律试验研究[J]. 嘉兴学院学报,2020,32(6):58 − 63. [LIU Jiadong,LU Hongbin,YIN Zongze. A study on the fissure of expansive soil improved with cement[J]. Journal of Jiaxing University,2020,32(6):58 − 63. (in Chinese with English abstract)]
LIU Jiadong, LU Hongbin, YIN Zongze. A study on the fissure of expansive soil improved with cement[J]. Journal of Jiaxing University, 2020, 32(6): 58 − 63. (in Chinese with English abstract)
[28] 孙丹阳,李和学,刘强,等. 地下水停采后地面沉降区地下水氟的演化规律:以沧州市为例[J]. 地质科技通报,2023(4):218 − 227. [SUN Danyang,LI Hexue,LIU Qiang,et al. Evolution of groundwater fluoride in land subsidence areas after groundwater cessation:A case study at Cangzhou[J]. Bulletin of Geological Science and Technology,2023(4):218 − 227. (in Chinese with English abstract)]
SUN Danyang, LI Hexue, LIU Qiang, et al. Evolution of groundwater fluoride in land subsidence areas after groundwater cessation: A case study at Cangzhou[J]. Bulletin of Geological Science and Technology, 2023(4): 218 − 227. (in Chinese with English abstract)
[29] 雷坤超. 南水北调前后北京平原区地下水和地面沉降演变特征[J]. 地质学报,2024,98(2):591 − 610. [LEI Kunchao. Characteristics of groundwater and land subsidence evolution before and after the South-to-North Water Diversion Project in Beijing,China[J]. Acta Geologica Sinica,2024,98(2):591 − 610. (in Chinese with English abstract)]
LEI Kunchao. Characteristics of groundwater and land subsidence evolution before and after the South-to-North Water Diversion Project in Beijing, China[J]. Acta Geologica Sinica, 2024, 98(2): 591 − 610. (in Chinese with English abstract)
-