-
摘要:
生物加固是工程地质领域近年来发展起来的一个新分支,微生物诱导碳酸钙沉淀(microbially induced calcite precipitation,MICP)加固技术是常用的方法之一。MICP加固技术是借助自然界广泛存在的微生物,利用其代谢活动诱导产生具有胶结作用和充填作用的碳酸钙沉淀,从而达到提高土体强度、降低土体渗透性、改善土体工程性能的目的。近20年来,MICP加固技术在理论研究、模型试验及现场试验方面已取得了许多重要成果。为推进对MICP加固技术的认识及研究,文章基于MICP加固技术目前取得的研究进展,进行了文献调研与分析,系统介绍了MICP技术的加固机理及影响因素,归纳分析了MICP加固技术的应用实例,在此基础上深刻分析了MICP技术目前存在的问题和挑战。结果如下:(1)MICP的加固机理是在微生物诱导矿化作用基础上产生的碳酸钙沉淀对土体的充填作用、覆膜作用和胶结作用;(2)MICP固化效果的影响因素主要有:菌液及胶结液的性质、pH值、温度、土体类型、注入技术等,以上影响因素均可以通过影响碳酸钙的形成及胶结效果来影响MICP的固化效果;(3)MICP加固技术在土体加固、抗裂防渗、防风抗蚀、修复污染水土等方面展现出了巨大的潜力;(4)MICP加固技术目前仍存在一些问题,包括固化均匀性、土体耐久性、经济效益、环境安全与可持续性等方面,为解决这些问题,需要进一步综合微生物学、土力学、材料科学、环境科学等多个学科进行深入研究。相关探讨有助于加深对MICP加固技术的理解,推动MICP加固技术在工程地质领域的发展及应用推广。
-
关键词:
- 微生物固化 /
- 微生物诱导碳酸钙沉淀 /
- 加固机理 /
- 工程应用
Abstract:Biological reinforcement is a new branch that has developed in the field of engineering geology in recent years, among which, the microbially induced calcium carbonate precipitation (MICP) reinforcement technology is an effective method. MICP reinforcement technology utilizes the metabolic activity of widely existing microorganisms in nature to induce the precipitation of calcium carbonate with cementing and filling effects, thereby improving the strength of soil, reducing its permeability, and enhancing its engineering performance. Over the past two decades, significant progress has been made in theoretical research, model experiments, and field trials of MICP reinforcement technology. To promote a deeper understanding of MICP reinforcement technology, this paper systematically introduced the reinforcement mechanism and influencing factors of microbial-induced calcium carbonate reinforcement technology based on the current research on MICP reinforcement technology. In addition, the application of MICP reinforcement technology was discussed thoroughly. The current problems and challenges of MICP technology were analyzed in depth. The results show that the strengthening mechanism of MICP is formed based on microbial-induced mineralization, which includes the filling and cementation of soil pores by calcium carbonate precipitation. The influencing factors of the solidification effect of MICP mainly are the properties of bacterial solution and cementing solution, pH , temperature, soil type, and reinforcement method, by influencing the formation of calcium carbonate and cementing effect. The MICP reinforcement technology has shown great potential in soil reinforcement, crack resistance, impermeability, wind erosion resistance, and remediation of contaminated water/soil. At present, the MICP reinforcement technology still has some problems, including solidification uniformity, soil durability, economic benefits, environmental safety, and sustainability. To solve these problems, it is necessary to further integrate microbiology, soil mechanics, materials science, environmental science, and other disciplines to conduct in-depth research, which will help deepen the understanding of MICP reinforcement technology, promote MICP technology to achieve more comprehensive development in the engineering geological field, and further promote application of this technology.
-
Key words:
- microbial reinforcement /
- MICP /
- strengthening mechanism /
- engineering application
-
-
图 2 不同菌液浓度下碳酸钙晶体的形貌特征[32]
Figure 2.
图 4 不同初始pH值下碳酸钙晶体的形貌特征[43]
Figure 4.
图 5 不同温度条件下碳酸钙晶体的形貌特征[48]
Figure 5.
图 6 土颗粒粒径与碳酸钙晶体产出量关系(据文献[49]修改)
Figure 6.
图 7 不同初始饱和度下碳酸钙晶体的形貌特征[55]
Figure 7.
图 8 不同固化方法下碳酸钙晶体形貌特征[58]
Figure 8.
-
[1] 叶为民,孔令伟,胡瑞林,等. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究[J]. 岩土工程学报,2022,44(7):1295 − 1309. [YE Weimin,KONG Lingwei,HU Ruilin,et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering,2022,44(7):1295 − 1309. (in Chinese with English abstract)] doi: 10.11779/CJGE202207009
YE Weimin, KONG Lingwei, HU Ruilin, et al. New prevention and treatment techniques and their applications to landslides and engineering slopes of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1295 − 1309. (in Chinese with English abstract) doi: 10.11779/CJGE202207009
[2] PADMANABHAN G,SHANMUGAM G K. Liquefaction and reliquefaction resistance of saturated sand deposits treated with sand compaction piles[J]. Bulletin of Earthquake Engineering,2021,19(11):4235 − 4259. doi: 10.1007/s10518-021-01143-8
[3] 息朝庄,张鹏飞,吴林锋,等. 贵州惠水耕地土壤重金属污染调查与评价[J]. 地质通报,2023,42(7):1228 − 1239. [XI Chaozhuang,ZHANG Pengfe,WU Linfeng,et al. Investigation and evaluation of heavy metal pollution in cultivated land in Huishui County,Guizhou Province. Geological Bulletin of China,2023,42(7):1228 − 1239.(in Chinese with English abstract)]
XI Chaozhuang, ZHANG Pengfe, WU Linfeng, et al. Investigation and evaluation of heavy metal pollution in cultivated land in Huishui County, Guizhou Province. Geological Bulletin of China, 2023, 42(7): 1228 − 1239.(in Chinese with English abstract)
[4] LI Xiaoyuan,XU Fang,CHEN Baoguo,et al. Investigation on the chloride ion erosion mechanism of cement mortar in coastal areas:From experiments to molecular dynamics simulation[J]. Construction and Building Materials,2022,350:128810. doi: 10.1016/j.conbuildmat.2022.128810
[5] Wang Qiong,Meng Yuhong,Su Wei,et al. Cracking and sealing behavior of the compacted bentonite upon technological voids filling[J]. Engineering Geology,2021,292:106244. doi: 10.1016/j.enggeo.2021.106244
[6] 张军舰,李鹏,殷坤宇,等. 基于接力排水的强夯法在滨海回填区地基处理中的试验研究[J]. 水文地质工程地质,2022,49(1):117 − 125. [ZHANG Junjian,LI Peng,YIN Kunyu,et al. An experimental study of the dynamic compaction method based on relay drainage in foundation treatment of the coastal backfill area[J]. Hydrogeology & Engineering Geology,2022,49(1):117 − 125. (in Chinese with English abstract)]
ZHANG Junjian, LI Peng, YIN Kunyu, et al. An experimental study of the dynamic compaction method based on relay drainage in foundation treatment of the coastal backfill area[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 117 − 125. (in Chinese with English abstract)
[7] NI J J,LIU S S,WANG Y C,et al. Synergistic influence of lime and straw on dredged sludge reinforcement under vacuum preloading[J]. Construction and Building Materials,2024,421:135642. doi: 10.1016/j.conbuildmat.2024.135642
[8] 邓铭江,蔡正银,郭万里,等. 换填及排水改造对北疆输水渠道稳定性的影响[J]. 岩土工程学报,2021,43(5):789 − 794. [DENG Mingjiang,CAI Zhengyin,GUO Wanli,et al. Influences of filling replacement and drainage modification on stability of water conveyance canals in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering,2021,43(5):789 − 794. (in Chinese with English abstract)] doi: 10.11779/CJGE202105001
DENG Mingjiang, CAI Zhengyin, GUO Wanli, et al. Influences of filling replacement and drainage modification on stability of water conveyance canals in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 789 − 794. (in Chinese with English abstract) doi: 10.11779/CJGE202105001
[9] 袁帅,王君,吴朝峰,等. 虹吸排水法处理软土地基的水位与沉降计算模型[J]. 吉林大学学报(地球科学版),2024,54(1):208 − 218. [YUAN Shuai,WANG Jun,WU Zhaofeng,et al. Calculation model for water level and settlement of soft foundation treated by siphon drainage[J]. Journal of Jilin University (Earth Science Edition),2024,54(1):208 − 218. (in Chinese with English abstract)]
YUAN Shuai, WANG Jun, WU Zhaofeng, et al. Calculation model for water level and settlement of soft foundation treated by siphon drainage[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(1): 208 − 218. (in Chinese with English abstract)
[10] 盛明强,邹淳,乾增珍,等. 水泥固化剂提高风积沙承载性能试验[J]. 地质科技通报,2022,41(2):147 − 153. [SHENG Mingqiang,ZOU Chun,QIAN Zengzhen,et al. Experiments on the bearing capacity of aeolian sand stabilized by cement stabilizers[J]. Bulletin of Geological Science and Technology,2022,41(2):147 − 153. (in Chinese with English abstract)]
SHENG Mingqiang, ZOU Chun, QIAN Zengzhen, et al. Experiments on the bearing capacity of aeolian sand stabilized by cement stabilizers[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 147 − 153. (in Chinese with English abstract)
[11] NAN J Y,CHANG D,LIU J K,et al. Investigation on the microstructural characteristics of lime-stabilized soil after freeze–thaw cycles[J]. Transportation Geotechnics,2024,44:101175. doi: 10.1016/j.trgeo.2023.101175
[12] 陈忠清,朱泽威,吕越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质,2022,49(4):100 − 108. [CHEN Zhongqing,ZHU Zewei,LYU Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology,2022,49(4):100 − 108. (in Chinese with English abstract)]
CHEN Zhongqing, ZHU Zewei, LYU Yue. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100 − 108. (in Chinese with English abstract)
[13] 王家全,刘宏志,林志南,等. 聚丙烯酸钠改性红黏土工程特性试验研究[J]. 水文地质工程地质,2024,51(3):110 − 117. [WANG Jiaquan,LIU Hongzhi,LIN Zhinan,et al. Experimental study on engineering properties of red clay modified by sodium polyacrylate[J]. Hydrogeology & Engineering Geology,2024,51(3):110 − 117. (in Chinese with English abstract)]
WANG Jiaquan, LIU Hongzhi, LIN Zhinan, et al. Experimental study on engineering properties of red clay modified by sodium polyacrylate[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 110 − 117. (in Chinese with English abstract)
[14] 李俊,张伟丽,陈宗武,等. 冻融循环对 MICP 加固土性能的影响[J/OL]. 地质科技通报,(2023-12-20)[2024-01-04]. [LI Jun,ZHANG Weili,CHEN Zongwu,et al. Experimental study of the freeze-thaw resistance of MICP-treated soil [J/OL]. Bulletin of Geological Science and Technology,(2023-12-20)[2024-01-04]. https://kns.cnki.net/kcms2/article/abstract?v=su5nt4ZpZVQhnjJs3GlK-WQOHdX-juh7JKKf3E7faUbTpUtnKHiDMbeJTZPm5lhUtdrW8dLStVsb6SblC3NCvQ_byNd5XbNjUgkY1uVnpX9HTR4kj1my1JcG3RI3GNTW6j4nsYhH7hn774cv9s6tRt3jpw9obZPClz7iZqrIa2_Rww8pwNi7k5a3yPDEGfoP9dNa7yJJHq1IHAfeGwtuilJlpPCb44h1vDA_ixjEh5kgCMqS6ZQqV9ntEZGCpMn-0ZzYPr4KDmLcwTcx5TyEkw==&uniplatform=NZKPT&language=CHS. (in Chinese with English abstract)]
LI Jun, ZHANG Weili, CHEN Zongwu, et al. Experimental study of the freeze-thaw resistance of MICP-treated soil [J/OL]. Bulletin of Geological Science and Technology, (2023-12-20)[2024-01-04]. https://kns.cnki.net/kcms2/article/abstract?v=su5nt4ZpZVQhnjJs3GlK-WQOHdX-juh7JKKf3E7faUbTpUtnKHiDMbeJTZPm5lhUtdrW8dLStVsb6SblC3NCvQ_byNd5XbNjUgkY1uVnpX9HTR4kj1my1JcG3RI3GNTW6j4nsYhH7hn774cv9s6tRt3jpw9obZPClz7iZqrIa2_Rww8pwNi7k5a3yPDEGfoP9dNa7yJJHq1IHAfeGwtuilJlpPCb44h1vDA_ixjEh5kgCMqS6ZQqV9ntEZGCpMn-0ZzYPr4KDmLcwTcx5TyEkw==&uniplatform=NZKPT&language=CHS. (in Chinese with English abstract)
[15] ARPAJIRAKUL S,PUNGRASMI W,LIKITLERSUANG S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement[J]. Construction and Building Materials,2021,282:122722. doi: 10.1016/j.conbuildmat.2021.122722
[16] LIU Shiyu,WANG Runkai,YU Jin,et al. Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles[J]. Construction and Building Materials,2020,243:118202. doi: 10.1016/j.conbuildmat.2020.118202
[17] 肖维民,林馨,钟建敏,等. 岩石节理微生物诱导碳酸钙沉积封堵渗流演化规律试验研究[J]. 岩土力学,2023,44(10):2798 − 2808. [XIAO Weimin,LIN Xin,ZHONG Jianmin,et al. Experimental study on rock joint permeability evolution during plugging process by microbially induced calcite precipitation[J]. Rock and Soil Mechanics,2023,44(10):2798 − 2808. (in Chinese with English abstract)]
XIAO Weimin, LIN Xin, ZHONG Jianmin, et al. Experimental study on rock joint permeability evolution during plugging process by microbially induced calcite precipitation[J]. Rock and Soil Mechanics, 2023, 44(10): 2798 − 2808. (in Chinese with English abstract)
[18] CHENG Liang,SHAHIN M A. Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs. Géotechnique Letters,2017,7(2):146 − 151.
[19] DHAMI N K,REDDY M S,MUKHERJEE A. Application of calcifying bacteria for remediation of stones and cultural heritages[J]. Frontiers in Microbiology,2014,5:304.
[20] WANG Yuze,SOGA K,DEJONG J T,et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique,2019,69(12):1086 − 1094.
[21] XIAO Yang,HE Xiang,WU Wei,et al. Kinetic biomineralization through microfluidic chip tests[J]. Acta Geotechnica,2021,16(10):3229 − 3237. doi: 10.1007/s11440-021-01205-w
[22] TOBLER D J,MINTO J M,EL MOUNTASSIR G,et al. Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation:Influence on hydraulic and mechanical performance[J]. Water Resources Research,2018,54(10):8295 − 8308. doi: 10.1029/2018WR023032
[23] DEJONG J,MORTENSEN B M,MARTINEZ B C,et al. Bio-mediated soil improvement[J]. Ecological Engineering,2010,36:197 − 210. doi: 10.1016/j.ecoleng.2008.12.029
[24] DE MUYNCK W,VERBEKEN K,DE BELIE N,et al. Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation[J]. Applied Microbiology and Biotechnology,2013,97(3):1335 − 1347. doi: 10.1007/s00253-012-3997-0
[25] DHAMI N K,REDDY M S,MUKHERJEE A. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites[J]. Journal of Microbiology and Biotechnology,2013,23(5):707 − 714. doi: 10.4014/jmb.1212.11087
[26] DEJONG J T,FRITZGES M B,NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11):1381 − 1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
[27] 王延宁,李子仪,孟智祥,等. 微生物诱导碳酸盐沉淀改良残积土坡面水力学特性研究[J]. 华中科技大学学报(自然科学版),2023,51(12):158 − 165. [WANG Yanning,LI Ziyi,MENG Zhixiang,et al. Study on hydraulic characteristics of microbial induced carbonate precipitation improved residual soil slope[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2023,51(12):158 − 165. (in Chinese with English abstract)]
WANG Yanning, LI Ziyi, MENG Zhixiang, et al. Study on hydraulic characteristics of microbial induced carbonate precipitation improved residual soil slope[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(12): 158 − 165. (in Chinese with English abstract)
[28] OKWADHA G D O,LI Jin. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere,2010,81(9):1143 − 1148. doi: 10.1016/j.chemosphere.2010.09.066
[29] ZHAO Qian,LI Lin,LI Chi,et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering,2014,26(12):4014094. doi: 10.1061/(ASCE)MT.1943-5533.0001013
[30] CHOU C W,SEAGREN E A,AYDILEK A H,et al. Biocalcification of sand through ureolysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(12):1179 − 1189. doi: 10.1061/(ASCE)GT.1943-5606.0000532
[31] VAN PAASSEN L A. Biogrout,ground improvement by microbial induced carbonate precipitation[D].Arizona:Arizona State University.2009.
[32] 成亮,钱春香,王瑞兴,等. 碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J]. 化学学报,2007,65(19):2133 − 2138. [CHENG Liang,QIAN Chunxiang,WANG Ruixing,et al. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta Chimica Sinica,2007,65(19):2133 − 2138. (in Chinese with English abstract)] doi: 10.3321/j.issn:0567-7351.2007.19.008
CHENG Liang, QIAN Chunxiang, WANG Ruixing, et al. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta Chimica Sinica, 2007, 65(19): 2133 − 2138. (in Chinese with English abstract) doi: 10.3321/j.issn:0567-7351.2007.19.008
[33] WANG Yuze,SOGA K,DEJONG J T,et al. Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates:A particle-scale experimental study[J]. Journal of Geotechnical and Geoenvironmental Engineering,2021,147(6):04021036. doi: 10.1061/(ASCE)GT.1943-5606.0002509
[34] ZHANG Yihui,GUO Hongxian,CHENG Xiaohui. Influences of calcium sources on microbially induced carbonate precipitation in porous media[J]. Materials Research Innovations,2014,18(sup2):S2-79 − S2-84.
[35] GOROSPE C M,HAN S H,KIM S G,et al. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J]. Biotechnology and Bioprocess Engineering,2013,18(5):903 − 908. doi: 10.1007/s12257-013-0030-0
[36] ACHAL V,PAN Xiangliang. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2[J]. Applied Biochemistry and Biotechnology,2014,173(1):307 − 317. doi: 10.1007/s12010-014-0842-1
[37] LYU Chao,TANG Chaosheng,ZHANG Junze,et al. Effects of calcium sources and magnesium ions on the mechanical behavior of MICP-treated calcareous sand:Experimental evidence and precipitated crystal insights[J]. Acta Geotechnica,2023,18(5):2703 − 2717. doi: 10.1007/s11440-022-01748-6
[38] AL QABANY A, SOGA K. Effect of chemical treatmentused in MICP on engineering properties of cemented soils[M]//LALOUI L, ed. Bio- and Chemo-Mechanical Processes in Geotechnical Engineering. Publisher: ICE Publishing, 2014: 107 − 115.
[39] SOON N W,LEE L M,KHUN T C. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2014,140(5):04014006. doi: 10.1061/(ASCE)GT.1943-5606.0001089
[40] MUJAH D,CHENG Liang,SHAHIN M A. Microstructural and geomechanical study on biocemented sand for optimization of MICP process[J]. Journal of Materials in Civil Engineering,2019,31(4):04019025. doi: 10.1061/(ASCE)MT.1943-5533.0002660
[41] YI Haihe,ZHENG Tianwen,JIA Zhirong,et al. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria[J]. Journal of Crystal Growth,2021,564:126113. doi: 10.1016/j.jcrysgro.2021.126113
[42] ZHENG Tianwen. Bacteria-induced facile biotic calcium carbonate precipitation[J]. Journal of Crystal Growth,2021,563(2):126096.
[43] LAI Hanjiang,CUI Mingjuan,CHU Jian. Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method[J]. Acta Geotechnica,2023,18(6):3259 − 3272. doi: 10.1007/s11440-022-01759-3
[44] 袁亮. 微生物碳酸酐酶诱导CaCO3沉淀的影响因素及生成机理[J]. 生物技术通报,2020,36(8):79 − 86. [YUAN Liang. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Biotechnology Bulletin,2020,36(8):79 − 86. (in Chinese with English abstract)]
YUAN Liang. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Biotechnology Bulletin, 2020, 36(8): 79 − 86. (in Chinese with English abstract)
[45] CHENG Liang,SHAHIN M A,CORD-RUWISCH R,et al. Soil stabilisation by microbial-induced calcite precipitation (MICP):Investigation into some physical and environmental aspects[C]//7th international congress on environmental geotechnics. Melbourne:Engineers Australia ,2014.
[46] SUN Xiao,MIAO Linchang,TONG Tianzhi,et al. Study of the effect of temperature on microbially induced carbonate precipitation[J]. Acta Geotechnica,2019,14(3):627 − 638. doi: 10.1007/s11440-018-0758-y
[47] 彭劼,何想,刘志明,等. 低温条件下微生物诱导碳酸钙沉积加固土体的试验研究[J]. 岩土工程学报,2016,38(10):1769 − 1774. [PENG Jie,HE Xiang,LIU Zhiming,et al. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering,2016,38(10):1769 − 1774. (in Chinese with English abstract)] doi: 10.11779/CJGE201610004
PENG Jie, HE Xiang, LIU Zhiming, et al. Experimental research on influence of low temperature on MICP-treated soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1769 − 1774. (in Chinese with English abstract) doi: 10.11779/CJGE201610004
[48] WANG Yuze,WANG Yong,KONSTANTINOU C. Strength Behavior of Temperature-Dependent MICP-Treated Soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2023,149(12):04023116. doi: 10.1061/JGGEFK.GTENG-11526
[49] REBATA-LANDA V. Microbial activity in sediments:Effects on soil behavior[M]. Atlanta:Georgia Institute of Technology,2007.
[50] LIANG Shihua,CHEN Juntao,NIU Jiuge,et al. Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation[J]. Marine Georesources & Geotechnology,2020,38(4):393 − 399.
[51] MITCHELL J K,SANTAMARINA J C. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10):1222 − 1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
[52] MAHAWISH A,BOUAZZA A,GATES W P. Effect of particle size distribution on the bio-cementation of coarse aggregates[J]. Acta Geotechnica,2018,13(4):1019 − 1025. doi: 10.1007/s11440-017-0604-7
[53] QABANY A A,SOGA K,SANTAMARINA C. Factors affecting efficiency of microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(8):992 − 1001. doi: 10.1061/(ASCE)GT.1943-5606.0000666
[54] ROWSHANBAKHT K,KHAMEHCHIYAN M,SAJEDI R H,et al. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment[J]. Ecological Engineering,2016,89:49 − 55. doi: 10.1016/j.ecoleng.2016.01.010
[55] CHENG Liang,CORD-RUWISCH R,SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal,2013,50(1):81 − 90. doi: 10.1139/cgj-2012-0023
[56] LI Yang,WEN Kejun,LI Lin,et al. Experimental investigation on compression resistance of bio-bricks[J]. Construction and Building Materials,2020,265:120751. doi: 10.1016/j.conbuildmat.2020.120751
[57] DAGLIYA M,SATYAM N,SHARMA M,et al. Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(5):1556 − 1567. doi: 10.1016/j.jrmge.2021.12.008
[58] QIAN Chunxiang,WANG Ruixing,CHENG Liang,et al. Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects[J]. Chinese Journal of Chemistry,2010,28(5):847 − 857. doi: 10.1002/cjoc.201090156
[59] 郭红仙,李东润,马瑞男,等. MICP拌和固化钙质砂一维固结试验[J]. 清华大学学报(自然科学版),2019,59(8):593 − 600. [GUO Hongxian,LI Dongrun,MA Ruinan,et al. Oedometer test of calcareous sands solidified using the MICP mixing method[J]. Journal of Tsinghua University (Science and Technology),2019,59(8):593 − 600. (in Chinese with English abstract)]
GUO Hongxian, LI Dongrun, MA Ruinan, et al. Oedometer test of calcareous sands solidified using the MICP mixing method[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(8): 593 − 600. (in Chinese with English abstract)
[60] LU Ting,WEI Zuoan,WANG Wensong,et al. Experimental Investigation of sample preparation and grouting technology on microbially reinforced tailings[J]. Construction and Building Materials,2021,312:125458. doi: 10.1016/j.conbuildmat.2021.125458
[61] SHAHROKHI-SHAHRAKI R,ZOMORODIAN S M A,NIAZI A,et al. Improving sand with microbial-induced carbonate precipitation[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2015,168(3):217 − 230. doi: 10.1680/grim.14.00001
[62] 崔明娟,郑俊杰,章荣军,等. 化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学,2015,36(增刊1):392 − 396. [CUI Mingjuan,ZHENG Junjie,ZHANG Rongjun,et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics,2015,36(S1):392 − 396. (in Chinese with English abstract)]
CUI Mingjuan, ZHENG Junjie, ZHANG Rongjun, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2015, 36(S1): 392 − 396. (in Chinese with English abstract)
[63] ZHANG Xinlei,SUN Yue,CHEN Yumin,et al. Uniformity of microbial injection for reinforcing saturated calcareous sand:A multi-test approach [J]. Biogeotechnics,2024:100105.
[64] TIAN Kanliang,WANG Xiaodong,ZHANG Shican,et al. Effect of reactant injection rate on solidifying aeolian sand via microbially induced calcite precipitation[J]. Journal of Materials in Civil Engineering,2020,32(10):04020291. doi: 10.1061/(ASCE)MT.1943-5533.0003391
[65] AKOĞUZ H,ÇELIK S,BARIS O. Effect of biocementation on the engineering properties of sand soils under different flow rates and treatment durations[J]. International Journal of Environmental Science and Technology,2023,20(10):11437 − 11450. doi: 10.1007/s13762-023-05059-5
[66] WANG Zhao,ZHANG Nan,JIN Yong,et al. Application of microbially induced calcium carbonate precipitation (MICP) in sand embankments for scouring/erosion control[J]. Marine Georesources & Geotechnology,2021,39(12):1459 − 1471.
[67] STAR W R L V D , WIJNGAARDEN W K V , PAASSEN L A V ,et al. Stabilization of gravel deposits using microorganisms[C]//Proceedings of the 15th European conference on soil mechanics and geotechnical engineering. Amsterdam :IOS Press,2011:85−90.
[68] CUI Mingjuan,ZHENG Junjie,CHU Jian,et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica,2021,16(5):1377 − 1389. doi: 10.1007/s11440-020-01099-0
[69] SHARMA M,SATYAM N,REDDY K R. Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions[J]. Engineering Geology,2021,284:106022. doi: 10.1016/j.enggeo.2021.106022
[70] SUN Xiaohao,MIAO Linchang,CHEN Runfa,et al. Liquefaction Resistance of Biocemented Loess Soil. Journal of Geotechnical and Geoenvironmental Engineering. 2021,147:04021117.
[71] 王连锐,陈筠,杨恒,等. 微生物对红黏土强度的改良效应及机理研究[J]. 长江科学院院报,2022,39(5):125 − 131. [WANG Lianrui,CHEN Jun,YANG Heng,et al. Effectiveness and mechanism of improving strength of red clay by microorganism[J]. Journal of Yangtze River Scientific Research Institute,2022,39(5):125 − 131. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20210142
WANG Lianrui, CHEN Jun, YANG Heng, et al. Effectiveness and mechanism of improving strength of red clay by microorganism[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(5): 125 − 131. (in Chinese with English abstract) doi: 10.11988/ckyyb.20210142
[72] 张宽,唐朝生,刘博,等. 基于新型单相MICP技术改性黏性土力学特性的试验研究[J]. 工程地质学报,2020,28(2):306 − 316. [ZHANG Kuan,TANG Chaosheng,LIU Bo,et al. Mechanical behavior of clayey soil treated by new one-phase micp technique[J]. Journal of Engineering Geology,2020,28(2):306 − 316. (in Chinese with English abstract)]
ZHANG Kuan, TANG Chaosheng, LIU Bo, et al. Mechanical behavior of clayey soil treated by new one-phase micp technique[J]. Journal of Engineering Geology, 2020, 28(2): 306 − 316. (in Chinese with English abstract)
[73] YANG Yang,CHU Jian,LIU Hanlong,et al. Construction of water pond using bioslurry-induced biocementation[J]. Journal of Materials in Civil Engineering,2022,34(3):06021009. doi: 10.1061/(ASCE)MT.1943-5533.0004109
[74] WU Chuangzhou,CHU Jian,WU Shifan,et al. Quantifying the permeability reduction of biogrouted rock fracture[J]. Rock Mechanics and Rock Engineering,2019,52:947 − 954. doi: 10.1007/s00603-018-1669-9
[75] LIU Bo,ZHU Cheng,TANG Chaosheng,et al. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP)[J]. Engineering Geology,2020,264:105389. doi: 10.1016/j.enggeo.2019.105389
[76] SUN Xiaohao,MIAO Linchang,WU Linyu,et al. The method of repairing microcracks based on microbiologically induced calcium carbonate precipitation[J]. Advances in Cement Research,2020,32(6):262 − 272. doi: 10.1680/jadcr.18.00121
[77] DEVRANI R,DUBEY A A,RAVI K,et al. Applications of bio-cementation and bio-polymerization for aeolian erosion control[J]. Journal of Arid Environments,2021,187:104433. doi: 10.1016/j.jaridenv.2020.104433
[78] CLARÀ SARACHO A,HAIGH S K,EHSAN JORAT M. Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand[J]. Géotechnique,2021,71(12):1135 − 1149.
[79] WANG Yanning,LI Sikan,LI Ziyi,et al. Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator[J]. Acta Geotechnica,2023,18(6):3273 − 3285. doi: 10.1007/s11440-022-01791-3
[80] ZHAO Yue,YAO Jun,YUAN Zhimin,et al. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation[J]. Environmental Science and Pollution Research International,2017,24(1):372 − 380. doi: 10.1007/s11356-016-7810-y
[81] KIM J H,LEE J Y. An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal[J]. Journal of Material Cycles and Waste Management,2019,21(2):239 − 247. doi: 10.1007/s10163-018-0779-5
[82] ZENG Yong,CHEN Zezhi,LYU Qingyang,et al. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge[J]. Journal of Hazardous Materials,2023,441:129866. doi: 10.1016/j.jhazmat.2022.129866
[83] 谢约翰,唐朝生,尹黎阳,等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报,2019,41(4):675 − 682. [XIE Yuehan,TANG Chaosheng,YIN Liyang,et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering,2019,41(4):675 − 682. (in Chinese with English abstract)] doi: 10.11779/CJGE201904010
XIE Yuehan, TANG Chaosheng, YIN Liyang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675 − 682. (in Chinese with English abstract) doi: 10.11779/CJGE201904010
[84] YAO Dunfan,WU Jiao,NIU Shuang,et al. An anionic biopolymer γ-polyglutamate enhanced the microbially induced carbonate precipitation for soil improvement:Mechanical behaviors and underlying mechanism[J]. Acta Geotechnica,2022,17(10):4485 − 4496. doi: 10.1007/s11440-022-01539-z
[85] FANG Chaolin,HE Jing,ACHAL V,et al. Tofu wastewater as efficient nutritional source in biocementation for improved mechanical strength of cement mortars[J]. Geomicrobiology Journal,2019,36(6):515 − 521. doi: 10.1080/01490451.2019.1576804
[86] Chen Liuxia,Song Yuqi,Fang Hao,et al. Systematic optimization of a novel,cost-effective fermentation medium of Sporosarcina pasteurii for microbially induced calcite precipitation (MICP)[J]. Construction and Building Materials,2022,348:128632. doi: 10.1016/j.conbuildmat.2022.128632
[87] KULANTHAIVEL P,SOUNDARA B,SELVAKUMAR S,et al. Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand[J]. Environmental Science and Pollution Research International,2022,29(44):66450 − 66461. doi: 10.1007/s11356-022-20484-8
[88] BURBANK M,WEAVER T,LEWIS R,et al. Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(6):928 − 936. doi: 10.1061/(ASCE)GT.1943-5606.0000781
-