人工智能技术在地面沉降研究中的应用与展望

秦同春, 俞同云, 王勇, 宁迪, 王海刚. 人工智能技术在地面沉降研究中的应用与展望[J]. 水文地质工程地质, 2024, 51(6): 232-240. doi: 10.16030/j.cnki.issn.1000-3665.202404049
引用本文: 秦同春, 俞同云, 王勇, 宁迪, 王海刚. 人工智能技术在地面沉降研究中的应用与展望[J]. 水文地质工程地质, 2024, 51(6): 232-240. doi: 10.16030/j.cnki.issn.1000-3665.202404049
QIN Tongchun, YU Tongyun, WANG Yong, NING Di, WANG Haigang. Application prospect of AI technology in the land subsidence analysis[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 232-240. doi: 10.16030/j.cnki.issn.1000-3665.202404049
Citation: QIN Tongchun, YU Tongyun, WANG Yong, NING Di, WANG Haigang. Application prospect of AI technology in the land subsidence analysis[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 232-240. doi: 10.16030/j.cnki.issn.1000-3665.202404049

人工智能技术在地面沉降研究中的应用与展望

详细信息
    作者简介: 秦同春(1985—),男,博士,高级工程师,主要从事水资源调查工作。E-mail:qintongchun@163.com
    通讯作者: 王勇(1984—),男,硕士,高级工程师,主要从事地质灾害防治工作。E-mail:281115212@qq.com
  • 中图分类号: P642.26

Application prospect of AI technology in the land subsidence analysis

More Information
  • 地面沉降作为全球性的环境地质问题,对城市安全和可持续发展构成了严峻挑战。随着监测技术的进步,传统的研究方法在大数据处理和监测预警工作中面临速度和准确性的挑战,迫切需要新的技术手段以提高效率。人工智能(artificial intelligence,AI)技术作为新质生产力的代表,在数据预处理、模型搭建、趋势预测等方面有着传统处理方法无法比拟的优势。文章对AI技术在地面沉降研究中的应用与展望进行综述,旨在将AI技术进一步引入地面沉降研究。首先对AI技术进行背景介绍,分析了其在地面沉降研究中的应用现状;随后,从监测预警系统以及宏观和微观机理研究的角度,对AI技术在地面沉降研究中的应用前景进行论述,分析了AI技术在提高研究效率和准确性方面的潜力;最后针对AI技术在地面沉降研究应用中的局限性提出了工作建议。文章认为地面沉降研究需要AI技术进一步助力。将AI技术更深入地引入地面沉降研究,不仅有助于提高地面沉降研究的数据处理能力,还有可能为地面沉降的早期预警和有效防控提供新思路,有助于推动地面沉降研究领域的进步和发展。

  • 加载中
  • 图 1  人工智能、机器学习以及深度学习之间的关系

    Figure 1. 

    图 2  地下水位变化与地面沉降的关系

    Figure 2. 

  • [1]

    秦同春,程国明,王海刚. 国际地面沉降研究进展的启示[J]. 地质通报,2018,37(增刊1):503 − 509. [QIN Tongchun,CHENG Guoming,WANG Haigang. Enlightenment from the progress of international land subsidence research[J]. Geological Bulletin of China,2018,37(Sup 1):503 − 509. (in Chinese with English abstract)]

    QIN Tongchun, CHENG Guoming, WANG Haigang. Enlightenment from the progress of international land subsidence research[J]. Geological Bulletin of China, 2018, 37(Sup 1): 503 − 509. (in Chinese with English abstract)

    [2]

    张阿根,刘毅,龚士良. 国际地面沉降研究综述[J]. 上海地质,2000,21(4):1 − 7. [ZHANG Agen,LIU Yi,GONG Shiliang. Overview of international land subsidence research[J]. Shanghai Geology,2000,21(4):1 − 7. (in Chinese with English abstract)]

    ZHANG Agen, LIU Yi, GONG Shiliang. Overview of international land subsidence research[J]. Shanghai Geology, 2000, 21(4): 1 − 7. (in Chinese with English abstract)

    [3]

    袁铭,白俊武,秦永宽. 国内外地面沉降研究综述[J]. 苏州科技学院学报(自然科学版),2016,33(1):1 − 5. [YUAN Ming,BAI Junwu,QIN Yongkuan. A review on land subsidence research[J]. Journal of Suzhou University of Science and Technology (Natural Science Edition),2016,33(1):1 − 5. (in Chinese with English abstract)]

    YUAN Ming, BAI Junwu, QIN Yongkuan. A review on land subsidence research[J]. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2016, 33(1): 1 − 5. (in Chinese with English abstract)

    [4]

    周永章,王俊,左仁广,等. 地质领域机器学习、深度学习及实现语言[J]. 岩石学报,2018,34(11):3173 − 3178. [ZHOU Yongzhang,WANG Jun,ZUO Renguang,et al. Machine learning,deep learning and Python language in field of geology[J]. Acta Petrologica Sinica,2018,34(11):3173 − 3178. (in Chinese with English abstract)]

    ZHOU Yongzhang, WANG Jun, ZUO Renguang, et al. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 2018, 34(11): 3173 − 3178. (in Chinese with English abstract)

    [5]

    周永章,陈烁,张旗,等. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J]. 岩石学报,2018,34(2):255 − 263. [ZHOU Yongzhang,CHEN Shuo,ZHANG Qi,et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica,2018,34(2):255 − 263. (in Chinese with English abstract)]

    ZHOU Yongzhang, CHEN Shuo, ZHANG Qi, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255 − 263. (in Chinese with English abstract)

    [6]

    阮晓钢. 人工智能专题序言[J]. 北京工业大学学报,2017,43(1):3. [RUAN Xiaogang. Preface of artificial intelligence[J]. Journal of Beijing University of Technology,2017,43(1):3. (in Chinese)]

    RUAN Xiaogang. Preface of artificial intelligence[J]. Journal of Beijing University of Technology, 2017, 43(1): 3. (in Chinese)

    [7]

    鲍磊,杨静,赵文渲. 人工智能机器人ChatGPT引发的问题及其对策研究[J]. 河北软件职业技术学院学报,2023,25(3):76 − 80. [BAO Lei,YANG Jing,ZHAO Wenxuan. Research on the problems caused by the artificial intelligence robot ChatGPT and its countermeasures[J]. Journal of Hebei Software Institute,2023,25(3):76 − 80. (in Chinese with English abstract)]

    BAO Lei, YANG Jing, ZHAO Wenxuan. Research on the problems caused by the artificial intelligence robot ChatGPT and its countermeasures[J]. Journal of Hebei Software Institute, 2023, 25(3): 76 − 80. (in Chinese with English abstract)

    [8]

    HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527 − 1554. doi: 10.1162/neco.2006.18.7.1527

    [9]

    BIANCO S,BUZZELLI M,MAZZINI D,et al. Deep learning for logo recognition[J]. Neurocomputing,2017,245:23 − 30. doi: 10.1016/j.neucom.2017.03.051

    [10]

    王琛,何有泉,宋凌寒,等. 理论辅助的弹塑性本构关系小样本深度学习[J]. 工程力学,2023,40(9):29 − 36. [WANG Chen,HE Youquan,SONG Linghan,et al. A theory-aided few-shot deep learning algorithm for elastoplastic constitutive relationships[J]. Engineering Mechanics,2023,40(9):29 − 36. (in Chinese with English abstract)]

    WANG Chen, HE Youquan, SONG Linghan, et al. A theory-aided few-shot deep learning algorithm for elastoplastic constitutive relationships[J]. Engineering Mechanics, 2023, 40(9): 29 − 36. (in Chinese with English abstract)

    [11]

    李琪林,严平,陈白杨,等. 一种模糊多粒度用电行为异常检测方法[J]. 计算机应用研究,2023,40(11):3348 − 3352. [LI Qilin,YAN Ping,CHEN Baiyang,et al. Fuzzy multi-granularity-based abnormal power consumption detection method[J]. Application Research of Computers,2023,40(11):3348 − 3352. (in Chinese with English abstract)]

    LI Qilin, YAN Ping, CHEN Baiyang, et al. Fuzzy multi-granularity-based abnormal power consumption detection method[J]. Application Research of Computers, 2023, 40(11): 3348 − 3352. (in Chinese with English abstract)

    [12]

    张驰,潘懋,胡水清,等. 融合储层纵向信息的机器学习岩性识别方法[J]. 地质科技通报,2023,42(3):289 − 299. [ZHANG Chi,PAN Mao,HU Shuiqing,et al. A machine learning lithologic identification method combined with vertical reservoir information[J]. Bulletin of Geological Science and Technology,2023,42(3):289 − 299. (in Chinese with English abstract)]

    ZHANG Chi, PAN Mao, HU Shuiqing, et al. A machine learning lithologic identification method combined with vertical reservoir information[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 289 − 299. (in Chinese with English abstract)

    [13]

    张雪峰,王照乙. 基于双决斗深度Q网络的自动换道决策模型[J]. 东北大学学报(自然科学版),2023,44(10):1369 − 1376. [ZHANG Xuefeng,WANG Zhaoyi. Automatic lane change decision model based on dueling double deep Q-network[J]. Journal of Northeastern University (Natural Science),2023,44(10):1369 − 1376. (in Chinese with English abstract)]

    ZHANG Xuefeng, WANG Zhaoyi. Automatic lane change decision model based on dueling double deep Q-network[J]. Journal of Northeastern University (Natural Science), 2023, 44(10): 1369 − 1376. (in Chinese with English abstract)

    [14]

    路德春,徐冰,孔凡超,等. 基于机器学习的盾构隧道地表沉降曲线智能预测方法[J]. 北京工业大学学报,2024,50(11):1285 − 1300. [LU Dechun,XU Bing,KONG Fanchao,et al. Intelligent prediction method for settlement curves of shield tunnel based on machine learning algorithms[J]. Journal of Beijing University of Technology,2024,50(11):1285 − 1300. (in Chinese with English abstract)]

    LU Dechun, XU Bing, KONG Fanchao, et al. Intelligent prediction method for settlement curves of shield tunnel based on machine learning algorithms[J]. Journal of Beijing University of Technology, 2024, 50(11): 1285 − 1300. (in Chinese with English abstract)

    [15]

    徐浩,廖铭新,吕家树,等. 基于机器学习的工作井开挖周边管线沉降预测研究[J]. 广东土木与建筑,2024,31(6):1 − 5. [XU Hao,LIAO Mingxin,LV Jiashu,et al. Prediction of Surrounding Settlement Due to Working Shaft Excavation Based on Machine Learning[J]. Guangdong Architecture Civil Engineering,2024,31(6):1 − 5.(in Chinese with English abstract)]

    XU Hao, LIAO Mingxin, LV Jiashu, et al. Prediction of Surrounding Settlement Due to Working Shaft Excavation Based on Machine Learning[J]. Guangdong Architecture Civil Engineering, 2024, 31(6): 1 − 5.(in Chinese with English abstract)

    [16]

    朱琳,宫辉力,李小娟,等. 区域地面沉降研究进展与展望[J]. 水文地质工程地质,2024,51(4):167 − 177. [ZHU Lin,GONG Huili,LI Xiaojuan,et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology,2024,51(4):167 − 177. (in Chinese with English abstract)]

    ZHU Lin, GONG Huili, LI Xiaojuan, et al. Research progress and prospect of land subsidence[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 167 − 177. (in Chinese with English abstract)

    [17]

    李丽. 地面沉降预测模型及其应用研究[D]. 西安:长安大学,2014. [LI Li. Study on land subsidence prediction model and its application[D]. Xi’an:Chang’an University,2014. (in Chinese with English abstract)]

    LI Li. Study on land subsidence prediction model and its application[D]. Xi’an: Chang’an University, 2014. (in Chinese with English abstract)

    [18]

    王显鹏,黄声享. GM-BP组合预测模型在基坑沉降分析中的应用[J]. 测绘工程,2016,25(3):61 − 63. [WANG Xianpeng,HUANG Shengxiang. Application of GM-BP combined model to deformation forecasting of foundation pit[J]. Engineering of Surveying and Mapping,2016,25(3):61 − 63. (in Chinese with English abstract)]

    WANG Xianpeng, HUANG Shengxiang. Application of GM-BP combined model to deformation forecasting of foundation pit[J]. Engineering of Surveying and Mapping, 2016, 25(3): 61 − 63. (in Chinese with English abstract)

    [19]

    陈晨,靳成才,赵富章,等. 基于PSO-BP神经网络的基坑周边地面沉降预测方法研究[J]. 探矿工程(岩土钻掘工程),2018,45(12):47 − 52. [CHEN Chen,JIN Chengcai,ZHAO Fuzhang,et al. Study on the prediction methods of ground settlement surrounding the foundation pit based on PSO-BP neural network[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2018,45(12):47 − 52. (in Chinese with English abstract)]

    CHEN Chen, JIN Chengcai, ZHAO Fuzhang, et al. Study on the prediction methods of ground settlement surrounding the foundation pit based on PSO-BP neural network[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2018, 45(12): 47 − 52. (in Chinese with English abstract)

    [20]

    卢浩,孙善政,施烨辉,等. 基于Apriori算法对地面沉降影响因素的数据挖掘及分析[J]. 隧道建设(中英文),2018,38(增刊2):104 − 110. [LU Hao,SUN Shanzheng,SHI Yehui,et al. Data mining and analysis of influence factors for ground settlement based on apriori algorithm[J]. Tunnel Construction,2018,38(Sup 2):104 − 110. (in Chinese with English abstract)]

    LU Hao, SUN Shanzheng, SHI Yehui, et al. Data mining and analysis of influence factors for ground settlement based on apriori algorithm[J]. Tunnel Construction, 2018, 38(Sup 2): 104 − 110. (in Chinese with English abstract)

    [21]

    ZHU Lin,GONG Huili,LI Xiaojuan,et al. Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing,China[J]. Chinese Geographical Science,2013,23(2):237 − 248. doi: 10.1007/s11769-013-0589-6

    [22]

    SHI Liyuan,GONG Huili,CHEN Beibei,et al. Land subsidence prediction induced by multiple factors using machine learning method[J]. Remote Sensing,2020,12(24):4044. doi: 10.3390/rs12244044

    [23]

    EL KAMALI M,ABUELGASIM A,PAPOUTSIS I,et al. A reasoned bibliography on SAR interferometry applications and outlook on big interferometric data processing[J]. Remote Sensing Applications:Society and Environment,2020,19:100358. doi: 10.1016/j.rsase.2020.100358

    [24]

    LI Huijun,ZHU Lin,DAI Zhenxue,et al. Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR[J]. Science of the Total Environment,2021,799:149244. doi: 10.1016/j.scitotenv.2021.149244

    [25]

    LI Huijun,ZHU Lin,GUO Gaoxuan,et al. Land subsidence due to groundwater pumping:Hazard probability assessment through the combination of Bayesian model and fuzzy set theory[J]. Natural Hazards and Earth System Sciences,2021,21(2):823 − 835. doi: 10.5194/nhess-21-823-2021

    [26]

    YUN K,ADAMS K,REAGER J,et al. Remote estimation of geologic composition using interferometric synthetic- aperture radar in California’s Central Valley [J]. ArXiv abs,2212.04813 (2022).

    [27]

    LI Huiju,ZHU Lin,GONG Huili,et al. Land subsidence modelling using a long short-term memory algorithm based on time-series datasets[J]. Proceedings of the International Association of Hydrological Sciences,2020,382:505 − 510. doi: 10.5194/piahs-382-505-2020

    [28]

    RADMAN A,AKHOONDZADEH M,HOSSEINY B. Integrating InSAR and deep-learning for modeling and predicting subsidence over the adjacent area of Lake Urmia,Iran[J]. GIScience & Remote Sensing,2021,58(8):1413 − 1433.

    [29]

    李洛宾,龚晓南,甘晓露,等. 基于循环神经网络的盾构隧道引发地面最大沉降预测[J]. 土木工程学报,2020,53(增刊1):13 − 19. [LI Luobin,GONG Xiaonan,GAN Xiaolu,et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal,2020,53(Sup 1):13 − 19. ( in Chinese with English abstract]

    LI Luobin, GONG Xiaonan, GAN Xiaolu, et al. Prediction of maximum ground settlement induced by shield tunneling based on recurrent neural network[J]. China Civil Engineering Journal, 2020, 53(Sup 1): 13 − 19. ( in Chinese with English abstract

    [30]

    JHONATAN S R R,HECTOR A A,JULIANA A P,et al. Forecasting deformation triggered by groundwater extraction using ps-insar time series. applying machine learning and statistical models in the madrid aquifer (spain) [C/OL]. USA:EGU General Assembly Conference Abstracts,2023 [2024-01-18]. https://ui.adsabs.harvard.edu/abs/2023EGUGA.2515915R.

    [31]

    管浩,刘维,王峰,等. 基于数据增强和机器学习算法的盾构隧道引发地面沉降预测及应用[J]. 隧道建设(中英文),2022,42(增刊1):331 − 341. [GUAN Hao,LIU Wei,WANG Feng,et al. Prediction of surface settlement caused by shield tunneling based on data enhancement and machine learning algorithm [J]. Tunnel Construction,2022,42(Sup 1):331 − 341. ( in Chinese with English abstract)]

    GUAN Hao, LIU Wei, WANG Feng, et al. Prediction of surface settlement caused by shield tunneling based on data enhancement and machine learning algorithm [J]. Tunnel Construction, 2022, 42(Sup 1): 331 − 341. ( in Chinese with English abstract)

    [32]

    张茂省,贾俊,王毅,等. 基于人工智能(AI)的地质灾害防控体系建设[J]. 西北地质,2019,52(2):103 − 116. [ZHANG Maosheng,JIA Jun,WANG Yi,et al. Construction of geological disaster prevention and control system based on AI[J]. Northwestern Geology,2019,52(2):103 − 116. (in Chinese with English abstract)]

    ZHANG Maosheng, JIA Jun, WANG Yi, et al. Construction of geological disaster prevention and control system based on AI[J]. Northwestern Geology, 2019, 52(2): 103 − 116. (in Chinese with English abstract)

    [33]

    李俊,刘文方,亓星,等. 基于人工智能地质灾害监测预测预警设备及其使用方法:CN114724340A[P]. 2022-07-08. [LI Jun,LIU Wenfang,QI Xing,et al. Artificial intelligence based geological hazard monitoring,prediction and early warning equipment and its usage method:CN114724340A[P]. 2022-07-08. (in Chinese)]

    LI Jun, LIU Wenfang, QI Xing, et al. Artificial intelligence based geological hazard monitoring, prediction and early warning equipment and its usage method: CN114724340A[P]. 2022-07-08. (in Chinese)

    [34]

    于宪煜,汤礼. 基于SMOTE-Tomek和CNN耦合的滑坡易发性评价模型及其应用——以三峡库区秭归—巴东段为例[J]. 中国地质灾害与防治学报,2024,35(3):141 − 151. [YU Xianyu,TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-tomek and CNN and its application:A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2024,35(3):141 − 151. (in Chinese with English abstract)]

    YU Xianyu, TANG Li. Landslide susceptibility mapping model based on a coupled model of SMOTE-tomek and CNN and its application: A case study in the Zigui-Badong section of the Three Gorges Reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(3): 141 − 151. (in Chinese with English abstract)

    [35]

    施小清,薛禹群,吴吉春,等. 常州地区含水层系统土层压缩变形特征研究[J]. 水文地质工程地质,2006,33(3):1 − 6. [SHI Xiaoqing,XUE Yuqun,WU Jichun,et al. A study of soil deformation properties of the groundwater system in the Changzhou area[J]. Hydrogeology & Engineering Geology,2006,33(3):1 − 6. (in Chinese with English abstract)]

    SHI Xiaoqing, XUE Yuqun, WU Jichun, et al. A study of soil deformation properties of the groundwater system in the Changzhou area[J]. Hydrogeology & Engineering Geology, 2006, 33(3): 1 − 6. (in Chinese with English abstract)

    [36]

    薛禹群,吴吉春,张云,等. 长江三角洲(南部)区域地面沉降模拟研究[J]. 中国科学(D辑:地球科学),2008,38(4):477 − 492. [XUE Yuqun,WU Jichun,ZHANG Yun,et al. Simulation study on regional land subsidence in the Yangtze River Delta (south)[J]. Science in China (Series D (Earth Sciences)),2008,38(4):477 − 492. (in Chinese)]

    XUE Yuqun, WU Jichun, ZHANG Yun, et al. Simulation study on regional land subsidence in the Yangtze River Delta (south)[J]. Science in China (Series D (Earth Sciences)), 2008, 38(4): 477 − 492. (in Chinese)

    [37]

    张云,薛禹群,吴吉春,等. 上海砂土蠕变变形特征的试验研究[J]. 岩土力学,2009,30(5):1226 − 1230. [ZHANG Yun,XUE Yuqun,WU Jichun,et al. Experimental research on creep of Shanghai sands[J]. Rock and Soil Mechanics,2009,30(5):1226 − 1230. (in Chinese with English abstract)]

    ZHANG Yun, XUE Yuqun, WU Jichun, et al. Experimental research on creep of Shanghai sands[J]. Rock and Soil Mechanics, 2009, 30(5): 1226 − 1230. (in Chinese with English abstract)

    [38]

    WANG Fei,MIAO Linchang,LV Weihua. Experimental study on the creep behavior of the Yangtze River sand[C]//GeoFlorida 2010: Advances in Analysis, Modeling & Design. Orlando:American Society of Civil Engineers,2010.

    [39]

    孙晓涵,崔向美. 高应力下西安含水层砂土蠕变特性的试验研究[J]. 南水北调与水利科技,2015,13(6):1133 − 1137. [SUN Xiaohan,CUI Xiangmei. Experimental research on creep characteristics of aquifer sand sediments in Xi’an under high stress[J]. South-to-North Water Transfers and Water Science & Technology,2015,13(6):1133 − 1137. (in Chinese with English abstract)]

    SUN Xiaohan, CUI Xiangmei. Experimental research on creep characteristics of aquifer sand sediments in Xi’an under high stress[J]. South-to-North Water Transfers and Water Science & Technology, 2015, 13(6): 1133 − 1137. (in Chinese with English abstract)

    [40]

    郭海朋,白晋斌,张有全,等. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质,2017,44(6):1115 − 1127. [GUO Haipeng,BAI Jinbin,ZHANG Youquan,et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China,2017,44(6):1115 − 1127. (in Chinese with English abstract)]

    GUO Haipeng, BAI Jinbin, ZHANG Youquan, et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 2017, 44(6): 1115 − 1127. (in Chinese with English abstract)

    [41]

    GALLOWAY D,JONES D R,INGEBRISTEN S E. Land subsidence in the UNITED STATES [M/OL]. USA:U. S. Geological Survey,1999[2024-01-18]. https://pubs.usgs. gov/ circ/circ1182/pdf/04part1_intro.pdf.

    [42]

    孟世豪,崔亚莉,田芳,等. 基于MODFLOW-SUB建立变渗透系数的地下水流-地面沉降模型[J]. 吉林大学学报(地球科学版),2022,52(2):550 − 559. [MENG Shihao,CUI Yali,TIAN Fang,et al. Modeling of groundwater flow-land subsidence with variable hydraulic conductivity based on MODFLOW-SUB[J]. Journal of Jilin University (Earth Science Edition),2022,52(2):550 − 559. (in Chinese with English abstract)]

    MENG Shihao, CUI Yali, TIAN Fang, et al. Modeling of groundwater flow-land subsidence with variable hydraulic conductivity based on MODFLOW-SUB[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(2): 550 − 559. (in Chinese with English abstract)

    [43]

    曹鑫宇,朱琳,宫辉力,等. AM-LSTM网络的北京平原东部地面沉降模拟[J]. 遥感学报,2022,26(7):1302 − 1314. [CAO Xinyu,ZHU Lin,GONG Huili,et al. Land subsidence simulation in the east of Beijing plain based on the AM-LSTM Network[J]. National Remote Sensing Bulletin,2022,26(7):1302 − 1314. (in Chinese with English abstract)] doi: 10.11834/jrs.20211297

    CAO Xinyu, ZHU Lin, GONG Huili, et al. Land subsidence simulation in the east of Beijing plain based on the AM-LSTM Network[J]. National Remote Sensing Bulletin, 2022, 26(7): 1302 − 1314. (in Chinese with English abstract) doi: 10.11834/jrs.20211297

    [44]

    李康. 地面沉降微观机理及流固耦合模型初探——以山东德州为例[D]. 济南:山东大学,2019. [LI Kang. Preliminary research on micromechanism and fluid-solid coupling model of land subsidence: Taking Dezhou in Shandong Province as an example [D]. Jinan:Shandong University,2019. (in Chinese with English abstract)]

    LI Kang. Preliminary research on micromechanism and fluid-solid coupling model of land subsidence: Taking Dezhou in Shandong Province as an example [D]. Jinan: Shandong University, 2019. (in Chinese with English abstract)

    [45]

    周萃英. 土体微观结构研究与土力学的发展方向——若干进展与思考[J]. 地球科学,2000,25(2):215 − 220. [ZHOU Cuiying. Research into soil mass microstructure and some progresses on soil mechanics[J]. Earth Science,2000,25(2):215 − 220. (in Chinese with English abstract)]

    ZHOU Cuiying. Research into soil mass microstructure and some progresses on soil mechanics[J]. Earth Science, 2000, 25(2): 215 − 220. (in Chinese with English abstract)

  • 加载中

(2)

计量
  • 文章访问数:  325
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2024-04-22
修回日期:  2024-05-22
刊出日期:  2024-11-15

目录