Non-overlapping friction element for soil-structure interaction and its application
-
摘要:
为了解决Goodman单元法向嵌入的缺陷,提出了一种无嵌入摩擦单元,将该单元加入到由土和结构共同作用的有限元模型中,实现了编程计算。以岩土体作为实体弹塑性单元,以斜坡或基坑边坡的支护桩作为梁单元,将土和梁接触处的Goodman 4节点8自由度的无厚度单元概化为4节点6自由度的无嵌入摩擦单元,即将Goodman单元在受压时,两个相邻的法相自由度合二为一,切向自由度仍为两个,该单元相当于切向可以滑动,法向不嵌入也不分离,由此定义了一种无嵌入摩擦单元。通过构造无嵌入摩擦单元刚度矩阵和组配总刚度矩阵建立了相应的有限元算法,编制了计算程序。算例分析表明,当Goodman单元法向刚度足够大时,其计算结果与无嵌入摩擦单元计算结果基本一致,无嵌入摩擦单元计算结果是Goodman单元法向刚度不断增大的极限解。无嵌入摩擦单元在算法上避免了法向刚度取值不确定引起的嵌入问题,为土与结构相互作用提供了一种严谨的解决方案。
-
关键词:
- Goodman接触单元 /
- 无嵌入接触 /
- 有限元 /
- 土-结构相互作用
Abstract:To address the issue of overlap in the Goodman element, this study introduces a non-overlapping friction element, which is integrated into a finite element model of soil-structure interaction and programmed for calculation. The model represents the soil mass as a solid elasto-plastic element and the retaining pile of slopes or foundation pits as beam elements. The Goodman four-node, eight-degree-of-freedom element at the interface between soil and beam is simplified to a four-node, six-degree-of-freedom non-overlapping friction element by merging adjacent normal degrees of freedom under compression condition. The non-overlapping friction element allows for tangential sliding without normal overlapping or separation. The corresponding finite element algorithm is established by constructing the element stiffness matrix of the non-overlapping friction element and assembling it into the global stiffness matrix. A computational program is subsequently implemented. Case studies indicate that when the normal stiffness of the Goodman element is sufficiently large, its computational results are essentially consistent with those of the embedded frictionless element, with the latter being the limiting solution as the normal stiffness of the Goodman element continuously increases. The non-overlapping friction element algorithmically avoids the overlapping caused by the normal stiffness, and provides a rigorous solution for soil-structure interaction.
-
Key words:
- Goodman element /
- non-overlapping /
- FEM /
- soil-structure interaction
-
-
表 1 单元刚度矩阵与总刚度矩阵对应关系
Table 1. Correspondence between element stiffness matrix and total global stiffness matrix
总节点号 单元节点 总刚度 单元刚度 (74,74) 58(3,3),68(2,2) K74,74 $k^{(58)}_{3,3}+k^{(68)}_{2,2} $ (74,75) 58(3,4),68(2,1) K74,85 $k^{(58)}_{3,4}+k^{(68)}_{2,1} $ (74,85) 68(2,3) K74,85 $k^{(68)}_{2,3} $ (74,86) 68(2,4) K74,86 $k^{(68)}_{2,4} $ (74,90) 无对应关系 0 无对应关系 (74,91) 无对应关系 0 无对应关系 (75,75) 58(4,4),68(1,1) K75,75 $k^{(58)}_{4,4}+k^{(68)}_{1,1} $ (75,85) 68(1,3) K75,85 $k^{(68)}_{1,3} $ (75,86) 68(1,4) K75,86 $k^{(68)}_{1,4} $ (75,90) 无对应关系 0 无对应关系 (75,91) 无对应关系 0 无对应关系 (85,85) 68(3,3),78(2,2),82(2,2) K85,85 $k^{(68)}_{3,3}+k^{(78)}_{2,2}+k^{(82)}_{2,2} $ (85,86) 68(3,4),78(2,1),82(2,1) K85,86 $k^{(68)}_{3,4}+k^{(78)}_{2,1}+k^{(82)}_{2,1} $ (85,90) 82(2,3) K85,90 $k^{(82)}_{2,3} $ (85,91) 82(2,4) K85,91 $k^{(82)}_{2,4} $ (86,86) 68(4,4),78(1,1),82(1,1) K86,86 $k^{(68)}_{4,4}+k^{(78)}_{1,1}+k^{(82)}_{1,1} $ (86,90) 82(1,3) K86,90 $k^{(82)}_{1,3} $ (86,91) 82(1,4) K86,91 $k^{(82)}_{1,4} $ (90,90) 82(3,3),86(2,2) K90,90 $k^{(82)}_{3,3} +k^{(86)}_{2,2}$ (90,91) 82(3,4),86(2,1) K90,91 $k^{(82)}_{3,4} +k^{(86)}_{2,1} $ (91,91) 82(4,4),86(1,1) K91,91 $k^{(82)}_{4,4} +k^{(86)}_{1,1} $ 注:单元节点表示方法为单元号(节点号,节点号);K为总刚度,下标为总节点号;k为单元刚度,上标为单元号,下标为单元节点号。 表 2 土体和支护桩的参数
Table 2. Parameters of soil and piles
土体参数 取值 支护桩参数 取值 重度/(kN·m−3) 16.0 抗弯刚度/(GPa·m4) 0.3 弹性模量/MPa 100.0 泊松比 0.3 内摩擦角/(°) 20.0 拉压刚度/(GPa·m2) 10.0 黏聚力/kPa 10.0 -
[1] 马露, 王坤, 陶思源, 等. 基于有效应力法的单桩负摩阻力解析解[J]. 水文地质工程地质,2024,51(5):79 − 86. [MA Lu, WANG Kun, TAO Siyuan, et al. Analytical solution for negative skin friction of single pile based on effective stress method[J]. Hydrogeology & Engineering Geology,2024,51(5):79 − 86. (in Chinese with English abstract)]
MA Lu, WANG Kun, TAO Siyuan, et al. Analytical solution for negative skin friction of single pile based on effective stress method[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 79 − 86. (in Chinese with English abstract)
[2] 吴泽坤, 何来胜, 白晓宇, 等. 层状土中静压桩连续贯入现场试验与数值模拟[J]. 吉林大学学报(地球科学版),2024,54(4):1291 − 1304. [WU Zekun, HE Laisheng, BAI Xiaoyu, et al. Field test and numerical simulation of continuous penetration of jacked pile in layered soil[J]. Journal of Jilin University (Earth Science Edition),2024,54(4):1291 − 1304. (in Chinese with English abstract)]
WU Zekun, HE Laisheng, BAI Xiaoyu, et al. Field test and numerical simulation of continuous penetration of jacked pile in layered soil[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(4): 1291 − 1304. (in Chinese with English abstract)
[3] 刘章振, 阿发友, 张晶, 等. 云南某高填方边坡对油气管道的致灾风险及CFG加固效果分析对油气管道的影响[J]. 中国地质灾害与防治学报,2024,35(4):115 − 125. [LIU Zhangzhen, A Fayou, ZHANG Jing, et al. Analysis of disaster risk to oil and gas pipelines and the effect of CFG reinforcement on high-fill slopes in Yunnan[J]. The Chinese Journal of Geological Hazard and Control,2024,35(4):115 − 125. (in Chinese with English abstract)]
LIU Zhangzhen, A Fayou, ZHANG Jing, et al. Analysis of disaster risk to oil and gas pipelines and the effect of CFG reinforcement on high-fill slopes in Yunnan[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 115 − 125. (in Chinese with English abstract)
[4] 冼树兴,叶阳,李长冬,等. 干湿循环作用下软硬相间地层滑坡-抗滑桩体系劣化特性FDEM数值模拟[J/OL]. 地质科技通报. (2024-06-20)[2024-09-07]. [XIAN Shuxing,YE Yang,LI Changdong,et al. FDEM numerical simulation study on deterioration characteristics of weak-hard interbedded strata landslide-anti-slide pile system under wetting-drying cycles[J/OL]. Bulletin of Geological Science and Technology. (2024-06-20)[2024-09-07]. https://link.cnki.net/doi/10.19509/j.cnki.dzkq.tb20230700. (in Chinese with English abstract)]
XIAN Shuxing, YE Yang, LI Changdong, et al. FDEM numerical simulation study on deterioration characteristics of weak-hard interbedded strata landslide-anti-slide pile system under wetting-drying cycles[J/OL]. Bulletin of Geological Science and Technology. (2024-06-20)[2024-09-07]. https://link.cnki.net/doi/10.19509/j.cnki.dzkq.tb20230700. (in Chinese with English abstract)
[5] 张玲,陈金海,欧强. 基于能量法的轴横向荷载作用下单桩受力变形分析[J]. 水文地质工程地质,2020,47(5):81 − 91. [ZHANG Ling,CHEN Jinhai,OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology,2020,47(5):81 − 91. (in Chinese with English abstract)]
ZHANG Ling, CHEN Jinhai, OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 81 − 91. (in Chinese with English abstract)
[6] 路德春,王欣,罗磊,等. 土与结构接触特性对地下结构地震反应的影响研究[J]. 防灾减灾工程学报,2017,37(2):177 − 186. [LU Dechun,WANG Xin,LUO Lei,et al. Research on the seismic responses of underground structures considering the soil and structure contact[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(2):177 − 186. (in Chinese with English abstract)]
LU Dechun, WANG Xin, LUO Lei, et al. Research on the seismic responses of underground structures considering the soil and structure contact[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(2): 177 − 186. (in Chinese with English abstract)
[7] 李建华,祝方才,廖新贵. 土与结构物的接触特性研究[J]. 湖南工业大学学报,2009,23(3):1 − 4. [LI Jianhua,ZHU Fangcai,LIAO Xingui. Study on contact characteristics between Soil and structure[J]. Journal of Hunan University of Technology,2009,23(3):1 − 4. (in Chinese with English abstract)]
LI Jianhua, ZHU Fangcai, LIAO Xingui. Study on contact characteristics between Soil and structure[J]. Journal of Hunan University of Technology, 2009, 23(3): 1 − 4. (in Chinese with English abstract)
[8] 宋佳,沈浩浩,王福杰,等. 饱和土与结构动力相互作用的二维摩擦接触模型[J]. 北方工业大学学报,2024,36(2):66 − 76. [SONG Jia,SHEN Haohao,WANG Fujie,et al. A two-dimensional frictional contact model of the dynamic interaction between saturated soil and structure[J]. Journal of North China University of Technology,2024,36(2):66 − 76. (in Chinese with English abstract)]
SONG Jia, SHEN Haohao, WANG Fujie, et al. A two-dimensional frictional contact model of the dynamic interaction between saturated soil and structure[J]. Journal of North China University of Technology, 2024, 36(2): 66 − 76. (in Chinese with English abstract)
[9] GOODMAN R E,TAYLOR R L,BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division,1968,94(3):637 − 660. doi: 10.1061/JSFEAQ.0001133
[10] 王满生,周锡元,胡聿贤. 桩土动力分析中接触模型的研究[J]. 岩土工程学报,2005,27(6):616 − 620. [WANG Mansheng,ZHOU Xiyuan,HU Yuxian. Studies on contact model of soil-pile dynamic interaction[J]. Chinese Journal of Geotechnical Engineering,2005,27(6):616 − 620. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-4548.2005.06.002
WANG Mansheng, ZHOU Xiyuan, HU Yuxian. Studies on contact model of soil-pile dynamic interaction[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 616 − 620. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2005.06.002
[11] 杨林德,李象范,钟正雄. 复合型土钉墙的非线性有限元分析[J]. 岩土工程学报,2001,23(2):149 − 152. [YANG Linde,LI Xiangfan,ZHONG Zhengxiong. The nonlinear analysis of FEM on composite soil-nailed retaining wall[J]. Chinese Journal of Geotechnical Engineering,2001,23(2):149 − 152. (in Chinese with English abstract)]
YANG Linde, LI Xiangfan, ZHONG Zhengxiong. The nonlinear analysis of FEM on composite soil-nailed retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 149 − 152. (in Chinese with English abstract)
[12] DHADSE G D,RAMTEKKAR G D,BHATT G. Finite element modeling of Soil structure interaction system with interface:A review[J]. Archives of Computational Methods in Engineering,2021,28(5):3415 − 3432. doi: 10.1007/s11831-020-09505-2
[13] 孔宪京,刘京茂,邹德高,等. 土–界面–结构体系计算模型研究进展[J]. 岩土工程学报,2021,43(3):397 − 405. [KONG Xianjing,LIU Jingmao,ZOU Degao,et al. State-of-the-art:Computational model for soil-interface-structure system[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):397 − 405. (in Chinese with English abstract)]
KONG Xianjing, LIU Jingmao, ZOU Degao, et al. State-of-the-art: Computational model for soil-interface-structure system[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 397 − 405. (in Chinese with English abstract)
[14] 殷宗泽,朱泓,许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报,1994,16(3):14 − 22. [YIN Zongze,ZHU Hong,XU Guohua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering,1994,16(3):14 − 22. (in Chinese with English abstract)]
YIN Zongze, ZHU Hong, XU Guohua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 14 − 22. (in Chinese with English abstract)
[15] 张茂会,王观琪,潘家军,等. Goodman接触面单元切向刚度系数确定方法的研究[C]//夏才初,朱合华,沈明容. 和谐地球上的水工岩石力学——第三届全国水工岩石力学学术会议论文集. 上海:同济大学出版社,2010:52 − 56. [ZHANG Maohui,WANG Guanqi,PAN Jiajun,et al. Hydraulic rock mechanics on a harmonious earth-proceedings of the third national hydraulic rock mechanics conference[C]//XIA Caichu,ZHU Hehua,SHEN Mingrong. Hydraulic rock mechanics on a harmonious earth:Proceedings of the 3rd national conference on hydraulic rock mechanics. Shanghai:Tongji University Press,2010:52 − 56. (in Chinese)]
ZHANG Maohui, WANG Guanqi, PAN Jiajun, et al. Hydraulic rock mechanics on a harmonious earth-proceedings of the third national hydraulic rock mechanics conference[C]//XIA Caichu, ZHU Hehua, SHEN Mingrong. Hydraulic rock mechanics on a harmonious earth: Proceedings of the 3rd national conference on hydraulic rock mechanics. Shanghai: Tongji University Press, 2010: 52 − 56. (in Chinese)
[16] VILADKAR M N,ZEDAN A J,SARAN S,et al. Nonlinear elastic analysis of shallow footings subjected to eccentric inclined loads[J]. Geomechanics and Geoengineering,2014,10(1):45 − 56.
[17] PANDE G N,SHARMA K G. On joint/interface elements and associated problems of numerical ill-conditioning[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1979,3(3):293 − 300. doi: 10.1002/nag.1610030308
[18] DAY R A,POTTS D M. Zero thickness interface elements—Numerical stability and application[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,18(10):689 − 708. doi: 10.1002/nag.1610181003
[19] 雷晓燕,王五全. 消除接触摩擦单元应力振荡的方法[J]. 华东交通大学学报,1993,10(4):1 − 8. [LEI Xiaoyan,WANG Wuquan. Method of eliminating stress oscillations in the contact friction element[J]. Journal of East China Jiaotong University,1993,10(4):1 − 8. (in Chinese with English abstract)]
LEI Xiaoyan, WANG Wuquan. Method of eliminating stress oscillations in the contact friction element[J]. Journal of East China Jiaotong University, 1993, 10(4): 1 − 8. (in Chinese with English abstract)
[20] 孔科,楚锡华,徐远杰,等. 基于改进Goodman单元的框格式地下连续墙施工泥皮模拟[C]//中国计算力学大会2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集,2010:1836 − 1842. [KONG Ke,CHU Xihua,XU Yuanjie,et al. Simulation of mud cake of underground continuous wall-slot on the basis of the improved Goodman element[C]//Proceedings of the Chinese Conference on Computational Mechanics’ 2010 (CCCM2010) and the 8th Southern Conference on Computational Mechanics (SCCM8),2010:1836 − 1842. (in Chinese)]
KONG Ke, CHU Xihua, XU Yuanjie, et al. Simulation of mud cake of underground continuous wall-slot on the basis of the improved Goodman element[C]//Proceedings of the Chinese Conference on Computational Mechanics’ 2010 (CCCM2010) and the 8th Southern Conference on Computational Mechanics (SCCM8), 2010: 1836 − 1842. (in Chinese)
[21] VILLARD P. Modelling of interface problems by the finite element method with considerable displacements[J]. Computers and Geotechnics,1996,19(1):23 − 45. doi: 10.1016/0266-352X(95)00035-9
[22] 邵炜,金峰,王光纶. 用于接触面模拟的非线性薄层单元[J]. 清华大学学报(自然科学版),1999(2):34 − 38. [SHAO Wei,JIN Feng,WANG Guangguan. Nonlinear thin-layer element for modeling interface[J]. Journal of Tsinghua University(Science and Technology),1999(2):34 − 38. (in Chinese with English abstract)]
SHAO Wei, JIN Feng, WANG Guangguan. Nonlinear thin-layer element for modeling interface[J]. Journal of Tsinghua University(Science and Technology), 1999(2): 34 − 38. (in Chinese with English abstract)
[23] XUE Xinhua,YANG Xingguo,LIU Enlong. Application of the modified goodman model in soil Nailing[J]. International Journal of Geomechanics,2013,13(1):41 − 48. doi: 10.1061/(ASCE)GM.1943-5622.0000177
[24] 李守德,俞洪良. Goodman接触面单元的修正与探讨[J]. 岩石力学与工程学报,2004,23(15):2628 − 2631. [LI Shoude,YU Hongliang. Modification of goodman interface element[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2628 − 2631. (in Chinese with English abstract)]
LI Shoude, YU Hongliang. Modification of goodman interface element[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2628 − 2631. (in Chinese with English abstract)
[25] 李萍,邓小鹏,相建华,等. 基坑开挖与支护模拟的位移迭代法[J]. 岩土力学,2005,26(11):1815 − 1818. [LI Ping,DENG Xiaopeng,XIANG Jianhua,et al. Method of displacement iteration in numerical simulation of foundation pit[J]. Rock and Soil Mechanics,2005,26(11):1815 − 1818. (in Chinese with English abstract)]
LI Ping, DENG Xiaopeng, XIANG Jianhua, et al. Method of displacement iteration in numerical simulation of foundation pit[J]. Rock and Soil Mechanics, 2005, 26(11): 1815 − 1818. (in Chinese with English abstract)
[26] GRIFFITHS D V,LANE P A. Slope stability analysis by finite elements[J]. Géotechnique,1999,49(3):387 − 403.
-