Characteristics and chain-generated processes of extreme rainfall-induced geohazards in the upper reaches of the Juma River
-
摘要:
2023年7月29日至8月2日,华北地区发生了历史上罕见的极端降雨事件,在京冀西部山区引发了大量突发性地质灾害,造成严重的人员伤亡与财产损失。在总结分析京冀西部山区“23•7”极端降雨引发地质灾害特征的基础上,采用现场调查、无人机航拍和数值模拟方法,分析了拒马河上游地质灾害发育特征,以西塔村地质灾害链为例,模拟分析了地质灾害链的形成演化过程。结果表明:(1)京冀西部山区“23•7”极端降雨引发的地质灾害表现出明显的群发性和链生性,浅表层崩塌、滑坡数量多,常成为泥石流的物源,共同构成崩塌滑坡-泥石流-堵河-溃决灾害链;(2)拒马河上游地质灾害链表现出长链条演进、多物源加积的特征,单条灾害链长度可达1.2~1.5 km,浅表崩滑物源可在灾害链的形成区和流通区同时补给,呈现灾害链规模放大效应;(3)数值模拟结果显示,西塔村后山2条沟域灾害链单独启动工况下的最大堆积厚度分别为7.1,6.2 m,同时启动工况下的最大堆积厚度达8.6 m,灾害链最大运动速率达9.1 m/s,表现出典型的单灾链多物源加积放大和多灾链汇聚放大特征,成为京冀西部山区极端降雨引发地质灾害链的新特点。相关研究认识对于北方山区地质灾害链风险防范具有一定指导意义。
Abstract:From July 29 to August 2, 2023, a historically rare extreme rainfall event occurred in North China, which triggered a large number of geohazards in the mountainous areas of western Beijing and Hebei, resulting in serious casualties and property losses. This study analyzed the characteristics of geohazards under the extreme rainfall of “23•7” in Beijing-Hebei region, using on-site investigation, UAV aerial photography, and numerical simulation methods. The analysis focused on the geohazard characteristics in the upper reaches of the Juma River, examining the formation and evolution process and movement characteristics of the geohazards chain in Xita village. The results show that the sudden geohazards in the Beijing-Hebei region exhibited a clustered pattern, with frequent shallow surface collapses and landslides, which often became the source of mudslides, forming of a complete disaster chain of shallow surface landslide-mudslide-river blockage-failure together. The geological disaster chain in the upper reaches of the river shows the characteristics of long chain evolution and multiple sources of material accumulation. The length of a single disaster chain can reach 1.2~1.5 km, with the sources of shallow avalanches and slides replenishing both in the formation area and circulation area of the disaster chain, amplifying the scale of the disaster. Numerical simulation results show that the movement speed of the geohazards chain in Xita Village reaches up to 9.1 m/s. The maximum accumulation thickness in the two ditches was 7.1 m and 6.2 m when activated individually, and 8.6 m in the case of simultaneous activation, with the movement process showing typical multi-source accretion and amplification. This study provides valuable insights for risk prevention and management of sudden geohazard chains under extreme rainfall in northern mountainous areas.
-
-
表 1 灾害链数值模拟参数取值
Table 1. Parameter values for geohazard chain modeling
泥石流密度
/(kg·m−3)摩擦系数 湍流系数
/(m·s−2)持续时间
/s1#主沟流量
/(m3·s−1)2#主沟流量
/(m3·s−1)大型支沟流量
/(m3·s−1)小型支沟流量
/(m3·s−1)1550 0.15 500 2000 105 70 28 10 -
[1] WORLD METEOROLOGICAL ORGANIZATION (WMO). State of the global climate 2023[R]. Geneva:WMO,2024.
[2] ROSI A,SEGONI S,CANAVESI V,et al. Definition of 3D rainfall thresholds to increase operative landslide early warning system performances[J]. Landslides,2021,18(3):1045 − 1057. doi: 10.1007/s10346-020-01523-2
[3] LEE S,AN H,KIM M,et al. Evaluation of different erosion–entrainment models in debris-flow simulation[J]. Landslides,2022,19(9):2075 − 2090. doi: 10.1007/s10346-022-01901-y
[4] DIWAKAR K C,DANGI H,NAQVI M W,et al. Recurring landslides and debris flows near kalli village in the lesser Himalayas of western Nepal[J]. Geotechnical and Geological Engineering,2023,41(5):3151 − 3168. doi: 10.1007/s10706-023-02450-4
[5] JAIN N,MARTHA T R,KHANNA K,et al. Major landslides in Kerala,India,during 2018–2020 period:An analysis using rainfall data and debris flow model[J]. Landslides,2021,18(11):3629 − 3645. doi: 10.1007/s10346-021-01746-x
[6] 刘传正,黄帅. 郑州西部山区“7•20”山洪地质灾害成因研究[J]. 工程地质学报,2022,30(3):931 − 943. [LIU Chuanzheng,HUANG Shuai. Research on “7•20” mountain torrents and geological disasters in Zhengzhou City,Henan Province of China[J]. Journal of Engineering Geology,2022,30(3):931 − 943. (in Chinese with English abstract)]
LIU Chuanzheng, HUANG Shuai. Research on “7•20” mountain torrents and geological disasters in Zhengzhou City, Henan Province of China[J]. Journal of Engineering Geology, 2022, 30(3): 931 − 943. (in Chinese with English abstract)
[7] 张启义. 北京房山区“23•7”特大暴雨灾害的成因及启示[J]. 中国防汛抗旱,2023,33(10):43 − 47. [ZHANG Qiyi. The cause and Enlightenment of the “23•7” extremely rainstorm disaster in Fangshan District of Beijing City[J]. China Flood & Drought Management,2023,33(10):43 − 47. (in Chinese with English abstract)]
ZHANG Qiyi. The cause and Enlightenment of the “23•7” extremely rainstorm disaster in Fangshan District of Beijing City[J]. China Flood & Drought Management, 2023, 33(10): 43 − 47. (in Chinese with English abstract)
[8] 刘佳意,陈春利,付昱凯,等. 降雨诱发的浅表堆积层滑坡成因机理与稳定性预测模型[J]. 水文地质工程地质,2024,51(2):183 − 191. [LIU Jiayi, CHEN Chunli, FU Yukai, et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology,2024,51(2):183 − 191. (in Chinese with English abstract)]
LIU Jiayi, CHEN Chunli, FU Yukai, et al. Mechanism of rainfall-induced shallow landslide and stability prediction model[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 183 − 191. (in Chinese with English abstract)
[9] 谭银龙,许万忠,曹家菊,等. 基于Midas-GTS的三峡库区金鸡岭滑坡成因机制与稳定性分析[J]. 水文地质工程地质,2023,50(1):113 − 121. [TAN Yinlong, XU Wanzhong, CAO Jiaju, et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology,2023,50(1):113 − 121. (in Chinese with English abstract)]
TAN Yinlong, XU Wanzhong, CAO Jiaju, et al. Mechanisms and stability analysis of the Jinjiling landslide in the Three Gorges Reservoir area based on Midas-GTS[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 113 − 121. (in Chinese with English abstract)
[10] 刘樯漪,程维明,孙东亚,等. 中国历史山洪灾害分布特征研究[J]. 地球信息科学学报,2017,19(12):1557 − 1566. [LIU Qiangyi,CHENG Weiming,SUN Dongya,et al. Distribution characteristics of historical mountain flood in China[J]. Journal of Geo-Information Science,2017,19(12):1557 − 1566. (in Chinese with English abstract)]
LIU Qiangyi, CHENG Weiming, SUN Dongya, et al. Distribution characteristics of historical mountain flood in China[J]. Journal of Geo-Information Science, 2017, 19(12): 1557 − 1566. (in Chinese with English abstract)
[11] 陈跃红,徐聪聪,张晓祥,等. 中国山洪区划研究[J]. 地理学报,2023,78(5):1059 − 1073. [CHEN Yuehong,XU Congcong,ZHANG Xiaoxiang,et al. Regionalization of flash floods in China[J]. Acta Geographica Sinica,2023,78(5):1059 − 1073. (in Chinese with English abstract)] doi: 10.11821/dlxb202305001
CHEN Yuehong, XU Congcong, ZHANG Xiaoxiang, et al. Regionalization of flash floods in China[J]. Acta Geographica Sinica, 2023, 78(5): 1059 − 1073. (in Chinese with English abstract) doi: 10.11821/dlxb202305001
[12] 郭良,张晓蕾,刘荣华,等. 全国山洪灾害调查评价成果及规律初探[J]. 地球信息科学学报,2017,19(12):1548 − 1556. [GUO Liang,ZHANG Xiaolei,LIU Ronghua,et al. Achievements and preliminary analysis on China National flash flood disasters investigation and evaluation[J]. Journal of Geo-Information Science,2017,19(12):1548 − 1556. (in Chinese with English abstract)]
GUO Liang, ZHANG Xiaolei, LIU Ronghua, et al. Achievements and preliminary analysis on China National flash flood disasters investigation and evaluation[J]. Journal of Geo-Information Science, 2017, 19(12): 1548 − 1556. (in Chinese with English abstract)
[13] 南赟,翟淑花,李岩,等. 北京地区“23•7”特大暴雨型地质灾害特征及预警成效分析[J]. 中国地质灾害与防治学报,2024,35(2):66 − 73. [NAN Yun,ZHAI Shuhua,LI Yan,et al. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):66 − 73. (in Chinese with English abstract)]
NAN Yun, ZHAI Shuhua, LI Yan, et al. Analysis on the characteristics of geological disasters and effectiveness of early warning duiring heavy rainfall on “23•7” in Beijing[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 66 − 73. (in Chinese with English abstract)
[14] 杨晓亮,金晓青,孙云,等. “23•7”河北太行山东麓罕见特大暴雨特征及成因[J]. 气象,2023,49(12):1451 − 1467. [YANG Xiaoliang,JIN Xiaoqing,SUN Yun,et al. Evolution characteristics and formation of the July 2023 severe torrential rain on the eastern foothills of Taihang Mountains in Hebei Province[J]. Meteorological Monthly,2023,49(12):1451 − 1467. (in Chinese with English abstract)] doi: 10.7519/j.issn.1000-0526.2023.102301
YANG Xiaoliang, JIN Xiaoqing, SUN Yun, et al. Evolution characteristics and formation of the July 2023 severe torrential rain on the eastern foothills of Taihang Mountains in Hebei Province[J]. Meteorological Monthly, 2023, 49(12): 1451 − 1467. (in Chinese with English abstract) doi: 10.7519/j.issn.1000-0526.2023.102301
[15] 杨舒楠,张芳华,胡艺,等. “23•7”华北特大暴雨过程的基本特征与成因初探[J]. 暴雨灾害,2023,42(5):508 − 520. [YANG Shunan,ZHANG Fanghua,HU Yi,et al. Analysis on the characteristics and causes of the “23•7” torrential rainfall event in North China[J]. Torrential Rain and Disasters,2023,42(5):508 − 520. (in Chinese with English abstract)] doi: 10.12406/byzh.2023-187
YANG Shunan, ZHANG Fanghua, HU Yi, et al. Analysis on the characteristics and causes of the “23•7” torrential rainfall event in North China[J]. Torrential Rain and Disasters, 2023, 42(5): 508 − 520. (in Chinese with English abstract) doi: 10.12406/byzh.2023-187
[16] 顾福计,钱龙,王梦洁,等. 太行山河北段“23•7”强降雨引发的地质灾害规律研究[J]. 中国地质灾害与防治学报,2024,35(2):55 − 65. [GU Fuji,QIAN Long,WANG Mengjie,et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control,2024,35(2):55 − 65. (in Chinese with English abstract)]
GU Fuji, QIAN Long, WANG Mengjie, et al. Analysis of geological hazards caused by the “23•7” heavy rainfall in the northern section of Taihang Mountain in Hebei Province[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(2): 55 − 65. (in Chinese with English abstract)
[17] 张江涛,何丽华,李江波,等. 河北“23•7”极端暴雨过程特征及成因初探[J]. 大气科学学报,2023,46(6):884 − 903. [ZHANG Jiangtao,HE Lihua,LI Jiangbo,et al. Preliminary study on the characteristics and causes of the “23•7” extreme rainstorm in Hebei[J]. Transactions of Atmospheric Sciences,2023,46(6):884 − 903. (in Chinese with English abstract)]
ZHANG Jiangtao, HE Lihua, LI Jiangbo, et al. Preliminary study on the characteristics and causes of the “23•7” extreme rainstorm in Hebei[J]. Transactions of Atmospheric Sciences, 2023, 46(6): 884 − 903. (in Chinese with English abstract)
[18] OUYANG Chaojun,WANG Zhongwen,AN Huicong,et al. An example of a hazard and risk assessment for debris flows:A case study of Niwan Gully,Wudu,China[J]. Engineering Geology,2019,263:105351. doi: 10.1016/j.enggeo.2019.105351
[19] OUYANG Chaojun,HE Siming,TANG Chuan. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area[J]. Engineering Geology,2015,194:62 − 72. doi: 10.1016/j.enggeo.2014.07.012
[20] 王俊飞,金超,袁鸿鹄,等. 冬奥会延庆赛区造雪引水工程潜在泥石流灾害模拟与对策研究[J]. 工程地质学报,2023,31(2):514 − 525. [WANG Junfei,JIN Chao,YUAN Honghu,et al. Numerical simulation and countermeasures of potential debris flow disasters in Yanqing competition area of Olympic Winter Games Beijing[J]. Journal of Engineering Geology,2023,31(2):514 − 525. (in Chinese with English abstract)]
WANG Junfei, JIN Chao, YUAN Honghu, et al. Numerical simulation and countermeasures of potential debris flow disasters in Yanqing competition area of Olympic Winter Games Beijing[J]. Journal of Engineering Geology, 2023, 31(2): 514 − 525. (in Chinese with English abstract)
[21] DUAN Wansuo,YANG Lichao,MU Mu,et al. Recent advances in China on the predictability of weather and climate[J]. Advances in Atmospheric Sciences,2023,40(8):1521 − 1547. doi: 10.1007/s00376-023-2334-0
[22] OGUZ E A,BENESTAD R E,PARDING K M,et al. Quantification of climate change impact on rainfall-induced shallow landslide susceptibility:A case study in central Norway[J]. Georisk:Assessment and Management of Risk for Engineered Systems and Geohazards,2024,18(2):467 − 490. doi: 10.1080/17499518.2023.2283848
[23] VILLAÇA C,SANTOS P P,ZÊZERE J L. Modelling the rainfall threshold for shallow landslides considering the landslide predisposing factors in Portugal[J]. Landslides,2024,21(9):2119 − 2133. doi: 10.1007/s10346-024-02284-y
[24] 许强,董秀军,邓茂林,等. 2010年“7•27”四川汉源二蛮山滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报,2010,18(5):609 − 622. [XU Qiang,DONG Xiujun,DENG Maolin,et al. The ermanshan rock slide debris flow of Junly 27,2010 in Hanyuan,Sichuan:Characteristics and failure mechanism[J]. Journal of Engineering Geology,2010,18(5):609 − 622. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2010.05.003
XU Qiang, DONG Xiujun, DENG Maolin, et al. The ermanshan rock slide debris flow of Junly 27, 2010 in Hanyuan, Sichuan: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2010, 18(5): 609 − 622. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.05.003
[25] 崔鹏,郭剑. 沟谷灾害链演化模式与风险防控对策[J]. 工程科学与技术,2021,53(3):5 − 18. [CUI Peng,GUO Jian. Evolution models,risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences,2021,53(3):5 − 18. (in Chinese with English abstract)]
CUI Peng, GUO Jian. Evolution models, risk prevention and control countermeasures of the valley disaster chain[J]. Advanced Engineering Sciences, 2021, 53(3): 5 − 18. (in Chinese with English abstract)
[26] 唐文坚,范仲杰,董林垚,等. 暴雨型山洪灾害链监测预警研究与展望[J]. 长江科学院院报,2023,40(7):73 − 79. [TANG Wenjian,FAN Zhongjie,DONG Linyao,et al. Research framework and prospect for monitoring and early warning of rainstorm-induced mountain torrent disaster chain[J]. Journal of Changjiang River Scientific Research Institute,2023,40(7):73 − 79. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20220469
TANG Wenjian, FAN Zhongjie, DONG Linyao, et al. Research framework and prospect for monitoring and early warning of rainstorm-induced mountain torrent disaster chain[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(7): 73 − 79. (in Chinese with English abstract) doi: 10.11988/ckyyb.20220469
[27] 高少华,殷跃平,李滨,等. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征[J]. 工程地质学报,2024,32(3):996 − 1009. [GAO Shaohua,YIN Yueping,LI Bin,et al. Dynamic characteristics of the rock-ice avalanche disaster chain in the Zelongnong Basin,Yarlung Zangbo River canyon region[J]. Journal of Engineering Geology,2024,32(3):996 − 1009. (in Chinese with English abstract)]
GAO Shaohua, YIN Yueping, LI Bin, et al. Dynamic characteristics of the rock-ice avalanche disaster chain in the Zelongnong Basin, Yarlung Zangbo River canyon region[J]. Journal of Engineering Geology, 2024, 32(3): 996 − 1009. (in Chinese with English abstract)
[28] 铁永波,张宪政,龚凌枫,等. 西南山区典型地质灾害链成灾模式研究[J]. 地质力学学报,2022,28(6):1071 − 1080. [TIE Yongbo,ZHANG Xianzheng,GONG Lingfeng,et al. Research on the pattern of typical geohazard chains in the southwest mountainous region,China[J]. Journal of Geomechanics,2022,28(6):1071 − 1080. (in Chinese with English abstract)] doi: 10.12090/j.issn.1006-6616.20222830
TIE Yongbo, ZHANG Xianzheng, GONG Lingfeng, et al. Research on the pattern of typical geohazard chains in the southwest mountainous region, China[J]. Journal of Geomechanics, 2022, 28(6): 1071 − 1080. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.20222830
[29] HE Shuangshuang,WANG Jun,LIU Songnan. Rainfall event–duration thresholds for landslide occurrences in China[J]. Water,2020,12(2):494. doi: 10.3390/w12020494
-