Effect of inoculation on water and salt distribution and alfalfa growth of coal gangue reconstructed layer
-
摘要:
西部露天煤矿区排土场生态修复面临水资源严重匮乏的制约,三层(生态层-涵水层-隔水层)海绵结构能够起到涵蓄水分促进植物生长的作用,同时也存在持续浇灌咸水导致土壤盐碱化的风险。煤矸石作为煤炭开采产生的主要伴生固废,可资源化利用作为充填材料来改变复合材料的结构与性能,但将煤矸石作为三层海绵结构材料并联合微生物复垦盐碱化土壤的潜力尚不清楚。研究旨在探究三层海绵结构中不同涵水层材料(沙土、煤矸石)与接种丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)对土壤水盐分布及苜蓿生长的影响,采用室内模拟土柱试验方法,试验设置4组处理,分别为沙土涵水层未接菌(S-CK)、煤矸石涵水层未接菌(C-CK)、沙土涵水层接种AMF(S-AM)与煤矸石涵水层接种AMF(C-AM)。研究结果表明:(1)相较于S-CK处理,C-CK处理使表层土盐度降低了31.5%,使苜蓿地上部生物量增加了49.6%、地下部生物量增加了38.3%;(2)相较于C-CK处理,C-AM处理使苜蓿地上部生物量增加了3.8倍、地下部生物量增加2.5倍,使表层土盐度提高了24.7%,AMF促进了20~40 cm土层粗根系的发育;(3)煤矸石涵水层与接种AMF的协同作用,使生态层土壤含水率增加了16.5%,表层土盐度降低了14.5%,地上部生物量增加了4.1倍,地下部生物量增加了4.7倍。综合研究表明,煤矸石涵水层与接种AMF相结合可以营造适生的土壤水盐环境,有效降低土壤盐碱化风险。研究结果可为西部地区露天矿排土场生态修复与重建提供科学依据与技术支撑。
Abstract:In the arid and semi-arid regions of western China, water scarcity and soil salinization pose significant constraints. These areas are also the primary sites for coal mining, where large amounts of coal gangue are generated during extraction occupying vast land resources, further exacerbating ecological degradation. Soil layer reconstruction and microbial remediation technologies are critical approaches for ecological restoration in mining dumps. However, the potential of coal gangue as a reconstructed soil layer material and its combined effects with microbial remediation remain unclear. This study investigated the impacts of different culvert layer materials (sandy soil and coal gangue) and Arbuscular mycorrhizal fungi (AMF) inoculation on soil water-salt distribution and alfalfa growth within a three-layer sponge structure (ecological layer-culvert layer - waterproof layer). Indoor soil column experiments were conducted with four treatments: sandy culvert layer without inoculation (S-CK), coal gangue culvert layer without inoculation (C-CK), sandy culvert layer with AMF inoculation (S-AM), and coal gangue culvert layer with AMF inoculation (C-AM), each with three replicates. Compared to the S-CK treatment, the C-CK treatment reduces surface soil salinity by 31.5%, while increasing alfalfa aboveground and belowground biomass by 49.6% and 38.3%, respectively. (2) Compared to the C-CK treatment, the C-AM treatment enhances aboveground and belowground biomass by 3.8-fold and 2.5-fold, respectively, but increased surface soil salt accumulation by 24.7%. AMF inoculation also promotes the development of coarse roots in the 20−40 cm soil layer. (3) The synergistic combination of coal gangue culvert layer and AMF inoculation increased soil moisture content in the ecological layer by 16.5%, reduces surface soil salinity by 14.5%, and elevates aboveground and belowground biomass by 4.1-fold and 4.7-fold, respectively. These findings demonstrate that the integration of coal gangue as a culvert layer with AMF inoculation creates a favorable soil water-salt environment, offering an effective strategy for mitigating salinization and promoting ecological restoration of open-pit mining dumps in western China.
-
-
表 1 煤矸石主要化学成分及质量百分比
Table 1. Main chemical composition and mass percentage of coal gangue
化学成分 质量占比/% 化学成分 质量占比/% Na2O 1.0216 Fe2O3 6.5635 MgO 1.6334 NiO 0.0067 Al2O3 21.2891 CuO 0.0066 SiO2 62.0793 ZnO 0.0123 P2O5 0.1121 Ga2O3 0.0038 SO3 0.7712 As2O3 0.0031 Cl 0.0187 Rb2O 0.0194 K2O 3.6095 SrO 0.0338 CaO 1.6998 Y2O3 0.0032 TiO2 0.9076 ZrO2 0.0206 Cr2O3 0.0177 Nb2O5 0.002 0 MnO 0.0947 BaO 0.0701 表 2 土柱填充基质物理性质
Table 2. Physical Properties of Filling Substrate of Soil Column
土层
结构土壤
质地容重
/(g·cm−3)粒径范围及比例 孔隙度
/%田间持
水量/%生态层 黄土∶沙土
(质量比)=
1∶51.47 <0.002 mm,2.08% 0.002~0.050 mm,30.74% 23.2 15.6% 0.050~2.000 mm,67.18% 涵水层 煤矸石 1.27 0.5~3.0 cm 42.3 沙土 1.42 0~2.000 mm 20.0 表 3 不同处理的苜蓿侵染率
Table 3. Infection rate of alfalfa under different treatments
分组 C-CK S-CK C-AM S-AM 侵染率/% 3.7±2.2 5.2±3.0 61.5±6.7 65.2±5.9 表 4 不同处理下苜蓿根系分布特征
Table 4. Distribution characteristics of alfalfa roots under different treatments
土层深度/cm RLD/(cm·cm−3) RVD/(cm3·cm−3) RSD/(cm2·cm−3) 涵水层处理 CK AM CK AM CK AM 0~20 S 0.08Ba 0.12Ab 0.06Ba 0.25Aa 0.19Ba 0.49Ab C 0.10Ba 0.31Aa 0.07Ba 0.36Aa 0.24Ba 0.85Aa 20~40 S 0.12Aa 0.09Aa 0.02Ba 0.09Aa 0.16Ba 0.26Aa C 0.11Aa 0.15Aa 0.03Ba 0.08Aa 0.16Ba 0.33Aa 0~10 0.09ab 0.23a 0.09a 0.36a 0.26a 0.76a 10~20 0.08b 0.20a 0.04b 0.26a 0.17bc 0.58a 20~30 0.14a 0.11a 0.04bc 0.09b 0.2ab 0.27a 30~40 0.09ab 0.14a 0.02c 0.08b 0.11c 0.31a ANOVA P-value 土层深度 0.032 0.617 0.006 0.023 0.018 0.156 涵水层 (0~20) Ns * Ns Ns Ns * 涵水层 (20~40) Ns Ns Ns Ns Ns Ns 注:不同大写字母代表涵水层中CK与AM处理之间的差异显著,不同小写字母代表同一土层深度中沙土涵水层(S)与煤矸石涵水层(C)之间的差异显著;土层深度中不同小写字母代表同一列不同深度下的数据差异显著,(Duncan检验,P<0.05);Ns代表不同处理之间无显著性差异,*代表不同处理之间存在显著性差异(P<0.05)。 -
[1] WU Zhenhua,LEI Shaogang,LU Qingqing,et al. Impacts of large-scale open-pit coal base on the landscape ecological health of semi-arid grasslands[J]. Remote Sensing,2019,11(15):1820. doi: 10.3390/rs11151820
[2] WANG Shougang,HUANG Jiu,YU Haochen,et al. Recognition of landscape key areas in a coal mine area of a semi-arid steppe in China:A case study of Yimin open-pit coal mine[J]. Sustainability,2020,12(6):2239. doi: 10.3390/su12062239
[3] 崔潇,周妍如,刘孝阳,等. 平朔露天煤矿复垦区不同地质层组岩土质量综合评价[J]. 水文地质工程地质,2021,48(2):164 − 173. [CUI Xiao,ZHOU Yanru,LIU Xiaoyang,et al. Comprehensive evaluation of rock and soil quality of different geological stratum groups in Pingshuo opencast coal mine reclamation area[J]. Hydrogeology & Engineering Geology,2021,48(2):164 − 173. (in Chinese with English abstract)]
CUI Xiao, ZHOU Yanru, LIU Xiaoyang, et al. Comprehensive evaluation of rock and soil quality of different geological stratum groups in Pingshuo opencast coal mine reclamation area[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 164 − 173. (in Chinese with English abstract)
[4] 王靖伟. 露天煤矿排土场地层重构试验研究[D]. 徐州:中国矿业大学,2019. [WANG Jingwei. Experimental study on stratum reconstruction of dump soil in open-pit coal mine[D]. Xuzhou:China University of Mining and Technology,2019. (in Chinese with English abstract)]
WANG Jingwei. Experimental study on stratum reconstruction of dump soil in open-pit coal mine[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese with English abstract)
[5] 毕银丽, 高学江, 柯增鸣, 等. 露天煤矿排土场土层重构及接菌对植物根系提水作用试验研究[J]. 煤田地质与勘探,2022,50(12):12 − 20. [BI Yinli, GAO Xuejiang, KE Zengming, et al. Experimental study on effect of soil layer reconstruction and inoculation on plant root hydraulic lift in open-pit coal mine dump[J]. Coal Geology & Exploration,2022,50(12):12 − 20. (in Chinese with English abstract)]
BI Yinli, GAO Xuejiang, KE Zengming, et al. Experimental study on effect of soil layer reconstruction and inoculation on plant root hydraulic lift in open-pit coal mine dump[J]. Coal Geology & Exploration, 2022, 50(12): 12 − 20. (in Chinese with English abstract)
[6] GILLAND K E,MCCARTHY B C. Microtopography influences early successional plant communities on experimental coal surface mine land reclamation[J]. Restoration Ecology,2014,22(2):232 − 239. doi: 10.1111/rec.12066
[7] 毕银丽,彭苏萍,杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报,2021,46(5):1355 − 1364. [BI Yinli,PENG Suping,DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China[J]. Journal of China Coal Society,2021,46(5):1355 − 1364. (in Chinese with English abstract)]
BI Yinli, PENG Suping, DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China[J]. Journal of China Coal Society, 2021, 46(5): 1355 − 1364. (in Chinese with English abstract)
[8] KARIMOV A K,ŠIMŮNEK J,HANJRA M A,et al. Effects of the shallow water table on water use of winter wheat and ecosystem health:Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)[J]. Agricultural Water Management,2014,131:57 − 69. doi: 10.1016/j.agwat.2013.09.010
[9] FAN Jingsen,SUN Yuzhuang,LI Xinyu,et al. Pollution of organic compounds and heavy metals in a coal gangue dump of the Gequan Coal Mine,China[J]. Chinese Journal of Geochemistry,2013,32(3):241 − 247. doi: 10.1007/s11631-013-0628-0
[10] 李建中,张进德. 我国矿山地质环境调查工作探讨[J]. 水文地质工程地质,2018,45(4):169 − 172. [LI Jianzhong,ZHANG Jinde. Discussion on the work of mine geo-environmental investigation of China[J]. Hydrogeology & Engineering Geology,2018,45(4):169 − 172. (in Chinese with English abstract)]
LI Jianzhong, ZHANG Jinde. Discussion on the work of mine geo-environmental investigation of China[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 169 − 172. (in Chinese with English abstract)
[11] 李思雯. 改性煤矸石在矿区复垦林地土壤改良中的试验研究[D]. 阜新:辽宁工程技术大学,2022. [LI Siwen. Study on soil improvement of reclaimed forest land in mining area by modified coal gangue[D]. Fuxin:Liaoning Technical University,2022. (in Chinese with English abstract)]
LI Siwen. Study on soil improvement of reclaimed forest land in mining area by modified coal gangue[D]. Fuxin: Liaoning Technical University, 2022. (in Chinese with English abstract)
[12] 赵鸣,尹守仁,陈清如. 改性煤矸石矿粉填充橡胶(NR)的结构与性能[J]. 中国矿业大学学报,2005,34(4):472 − 475. [ZHAO Ming,YIN Shouren,CHEN Qingru. Effect of the structure and characters of modified coal shale filler on vulcanized rubber properties[J]. Journal of China University of Mining & Technology,2005,34(4):472 − 475. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-1964.2005.04.014
ZHAO Ming, YIN Shouren, CHEN Qingru. Effect of the structure and characters of modified coal shale filler on vulcanized rubber properties[J]. Journal of China University of Mining & Technology, 2005, 34(4): 472 − 475. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-1964.2005.04.014
[13] 赵鸣,山相朋,魏征. 煤矸石粉填充聚丙烯复合材料的性能研究[J]. 中国矿业大学学报,2014,43(1):126 − 131. [ZHAO Ming,SHAN Xiangpeng,WEI Zheng. Properties of polypropylene composite filled with coal gangue powder[J]. Journal of China University of Mining & Technology,2014,43(1):126 − 131. (in Chinese with English abstract)]
ZHAO Ming, SHAN Xiangpeng, WEI Zheng. Properties of polypropylene composite filled with coal gangue powder[J]. Journal of China University of Mining & Technology, 2014, 43(1): 126 − 131. (in Chinese with English abstract)
[14] WANG Tong,WANG Ying,WANG Jun. Research on potential fertilization of coal gangue in the Weibei Coalfield,China[J]. Acta Geologica Sinica-English Edition,2008,82(3):717 − 721. doi: 10.1111/j.1755-6724.2008.tb00623.x
[15] 王曦. 基于煤矸石充填的重构土壤水分运移特征及环境效应——以淮北矿区为例[D]. 淮南:安徽理工大学,2014. [WANG Xi. Water contension variational properties and environmental effects of reconstructed soil filled with coal gangue:A case study from Huaibei Mining Area[D]. Huainan:Anhui University of Science and Technology,2014. (in Chinese with English abstract)]
WANG Xi. Water contension variational properties and environmental effects of reconstructed soil filled with coal gangue: A case study from Huaibei Mining Area[D]. Huainan: Anhui University of Science and Technology, 2014. (in Chinese with English abstract)
[16] REN Lidong,HUANG Mingbin. Fine root distributions and water consumption of alfalfa grown in layered soils with different layer thicknesses[J]. Soil Research,2016,54(6):730 − 738. doi: 10.1071/SR15126
[17] LIU Qian,LIU Yanfeng,JIN Menggui,et al. Impacts of an internal finer-textured layer on soil evaporation and salt distribution[J]. Transport in Porous Media,2021,140(2):603 − 620. doi: 10.1007/s11242-021-01706-y
[18] CHEN Shuai,MAO Xiaomin,SHANG Songhao. Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils[J]. Agricultural Water Management,2022,266:107574. doi: 10.1016/j.agwat.2022.107574
[19] STORMONT J C,ANDERSON C E. Capillary barrier effect from underlying coarser soil layer[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8):641 − 648. doi: 10.1061/(ASCE)1090-0241(1999)125:8(641)
[20] CHEN Shuai,MAO Xiaomin,SHUKLA M K. Influence of coarse-textured soil layers under crop root zone on soil water and salt dynamics and crop yield in shallow groundwater areas[J]. Soil Science Society of America Journal,2021,85(5):1479 − 1495. doi: 10.1002/saj2.20212
[21] AUGÉ R M. Water relations,drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza,2001,11(1):3 − 42. doi: 10.1007/s005720100097
[22] QUIROGA G,ERICE G,AROCA R,et al. Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit[J]. Environmental and Experimental Botany,2019,167:103821. doi: 10.1016/j.envexpbot.2019.103821
[23] ZULFIQAR F,AKRAM N A,ASHRAF M. Osmoprotection in plants under abiotic stresses:New insights into a classical phenomenon[J]. Planta,2019,251(1):3.
[24] KAKOURIDIS A,HAGEN J A,KAN M P,et al. Routes to roots:Direct evidence of water transport by arbuscular mycorrhizal fungi to host plants[J]. New Phytologist,2022,236(1):210 − 221. doi: 10.1111/nph.18281
[25] WU Chao,BI Yinli,ZHU Wenbo. Is the amount of water transported by arbuscular mycorrhizal fungal hyphae negligible Insights from a compartmentalized experimental study[J]. Plant and Soil,2024,499(1):537 − 552.
[26] 毕银丽,田乐煊,柯增鸣. 接菌影响模拟重构土层水分布及水同位素分馏[J]. 煤炭科学技术,2023,51(9):274 − 283. [BI Yinli,TIAN Lexuan,KE Zengming. Simulated reconstruction of soil water distribution and isotope fractionation under the influence of AMF inoculation[J]. Coal Science and Technology,2023,51(9):274 − 283. (in Chinese with English abstract)] doi: 10.12438/cst.2022-1445
BI Yinli, TIAN Lexuan, KE Zengming. Simulated reconstruction of soil water distribution and isotope fractionation under the influence of AMF inoculation[J]. Coal Science and Technology, 2023, 51(9): 274 − 283. (in Chinese with English abstract) doi: 10.12438/cst.2022-1445
[27] 毕银丽,杨伟,柯增鸣,等. AMF-玉米联合对“表土层−含水层−隔水层”排土场重构模式土壤水盐分布的影响[J]. 煤田地质与勘探,2023,51(4):68 − 75. [BI Yinli,YANG Wei,KE Zengming,et al. Effect of AMF-maize combination on water and salt distribution in soil under the dump reconstruction mode of "topsoil-aquifer-aquitard"[J]. Coal Geology & Exploration,2023,51(4):68 − 75. (in Chinese with English abstract)] doi: 10.12363/issn.1001-1986.22.08.0619
BI Yinli, YANG Wei, KE Zengming, et al. Effect of AMF-maize combination on water and salt distribution in soil under the dump reconstruction mode of "topsoil-aquifer-aquitard"[J]. Coal Geology & Exploration, 2023, 51(4): 68 − 75. (in Chinese with English abstract) doi: 10.12363/issn.1001-1986.22.08.0619
[28] 雷廷武,马玉莹. 土壤质量含水率的测量方法及装置:CN103115836A[P]. 2013-05-22. [LEI Tingwu,MA Yuying. Measurement method and device of soil mass water content:CN103115836A[P]. 2013-05-22. (in Chinese)]
LEI Tingwu, MA Yuying. Measurement method and device of soil mass water content: CN103115836A[P]. 2013-05-22. (in Chinese)
[29] WALTER J,LÜCK E,BAURIEGEL A,et al. Seasonal dynamics of soil salinity in peatlands:A geophysical approach[J]. Geoderma,2018,310:1 − 11. doi: 10.1016/j.geoderma.2017.08.022
[30] 国家林业局. 森林土壤水分-物理性质的测定:LY-T 1215—1999[S]. 北京:中国标准出版社,1999. [State Forestry Administration. Determination of forest soil water-physical properties:LY/T 1215—1999[S]. Beijing:Standards Press of China,1999. (in Chinese)]
State Forestry Administration. Determination of forest soil water-physical properties: LY/T 1215—1999[S]. Beijing: Standards Press of China, 1999. (in Chinese)
[31] KE Zengming,MA Lihui,JIAO Feng,et al. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution[J]. Journal of Hydrology,2021,595:125988. doi: 10.1016/j.jhydrol.2021.125988
[32] FEDDES R A,RIJTEMA P E. Water withdrawal by plant roots[J]. Journal of Hydrology,1972,17(1/2):33 − 59.
[33] SUN Chengpeng,ZHAO Wenzhi,LIU Hu,et al. Effects of textural layering on water regimes in sandy soils in a desert-oasis ecotone,northwestern China[J]. Frontiers in Earth Science,2021,9:627500. doi: 10.3389/feart.2021.627500
[34] HE Kangkang,ZHANG Qiuying,AI Zhipin,et al. Characteristics and influence factors of soil water and salt movement in the Yellow River irrigation district[J]. Agronomy,2023,14(1):92. doi: 10.3390/agronomy14010092
[35] SHOKRI‐KUEHNI S M S,RAAIJMAKERS B,KURZ T,et al. Water table depth and Soil salinization:From pore-scale processes to field-scale responses[J]. Water Resources Research,2020,56(2):e2019WR026707. doi: 10.1029/2019WR026707
[36] DINNENY J R. Developmental responses to water and salinity in root systems[J]. Annual Review of Cell and Developmental Biology,2019,35:239 − 257. doi: 10.1146/annurev-cellbio-100617-062949
[37] SILTECHO S,HAMMECKER C,SRIBOONLUE V,et al. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land uses[J]. Hydrology and Earth System Sciences,2015,19(3):1193 − 1207. doi: 10.5194/hess-19-1193-2015
[38] ITYEL E,LAZAROVITCH N,SILBERBUSH M,et al. An artificial capillary barrier to improve root zone conditions for horticultural crops:Physical effects on water content[J]. Irrigation Science,2011,29(2):171 − 180. doi: 10.1007/s00271-010-0227-3
[39] ZOU Yutao,ZHANG Yanxia,TESTERINK C. Root dynamic growth strategies in response to salinity[J]. Plant,Cell & Environment,2022,45(3):695 − 704.
[40] 阮仕琴,陶刚,娄璇,等. 丛枝菌根真菌生态功能及其与共生植物互作机理[J]. 中国土壤与肥料,2022(5):237 − 244. [RUAN Shiqin,TAO Gang,LOU Xuan,et al. The ecological functions of arbuscular mycorrhizal fungi and their interaction mechanisms with the symbiotic plants[J]. Soils and Fertilizers Sciences in China,2022(5):237 − 244. (in Chinese with English abstract)] doi: 10.11838/sfsc.1673-6257.21081
RUAN Shiqin, TAO Gang, LOU Xuan, et al. The ecological functions of arbuscular mycorrhizal fungi and their interaction mechanisms with the symbiotic plants[J]. Soils and Fertilizers Sciences in China, 2022(5): 237 − 244. (in Chinese with English abstract) doi: 10.11838/sfsc.1673-6257.21081
[41] ZHENG Ying,CHEN Ning,YU Kailiang,et al. The effects of fine roots and arbuscular mycorrhizal fungi on soil macropores[J]. Soil and Tillage Research,2023,225:105528. doi: 10.1016/j.still.2022.105528
[42] ZHANG Xudong,YE Peng,WU Yajun,et al. Experimental study on simultaneous heat-water-salt migration of bare soil subjected to evaporation[J]. Journal of Hydrology,2022,609:127710. doi: 10.1016/j.jhydrol.2022.127710
[43] 黄雪峰,张沛然,杨校辉,等. 盐渍土盐胀特性与水热状态变化特征试验研究[J]. 水利与建筑工程学报,2016,14(6):184 − 189. [HUANG Xuefeng,ZHANG Peiran,YANG Xiaohui,et al. Experimental research on salt expansion law of saline soil and the change characteristics under different water thermal conditions[J]. Journal of Water Resources and Architectural Engineering,2016,14(6):184 − 189. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-1144.2016.06.036
HUANG Xuefeng, ZHANG Peiran, YANG Xiaohui, et al. Experimental research on salt expansion law of saline soil and the change characteristics under different water thermal conditions[J]. Journal of Water Resources and Architectural Engineering, 2016, 14(6): 184 − 189. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1144.2016.06.036
[44] WU Hui,WEN Qingbo,HU Liming,et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management,2017,63:161 − 171. doi: 10.1016/j.wasman.2017.01.016
[45] HAN Xiuna,DONG Ying,GENG Yuqing,et al. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics[J]. Scientific Reports,2021,11(1):15368. doi: 10.1038/s41598-021-94806-0
[46] 李振,雪佳,朱张磊,等. 煤矸石综合利用研究进展[J]. 矿产保护与利用,2021,41(6):165 − 178. [LI Zhen,XUE Jia,ZHU Zhanglei,et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources,2021,41(6):165 − 178. (in Chinese with English abstract)]
LI Zhen, XUE Jia, ZHU Zhanglei, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165 − 178. (in Chinese with English abstract)
-