Remote sensing monitoring of vegetation and analysis of carbon storage changes in Fengshan Park, Jiaozuo
-
摘要:
全球气候变化使生态系统碳储量研究备受关注,矿山修复后植被碳储量核算是生态修复效果评价的关键内容之一,也是建设“双碳社会”的需要。传统植被碳储量估算方法存在局限,而遥感技术和地理信息系统等的发展为该研究提供了新方向。焦作市缝山公园曾因不规范矿山开采活动导致生态环境严重破坏,自2005年始,当地政府投入资金进行生态修复,采用挂网喷播复绿、鱼鳞坑复绿等修复工程模式,种植大量乔灌木,使公园植被覆盖度显著提升。研究利用2013年、2018年、2023年3期2 m分辨率的高分1号卫星数据,结合遥感 - 多元线性回归模型,通过样地调查与取样,结合遥感数据预处理,提取植被指数等特征因子,构建并检验植被碳储量估测模型。结果表明:(1)公园植被碳储量在2013— 2018年明显增加,从1.56×103 t增加到1.90×103 t,2018 —2023年轻微减少至1.78×103 t,10 a间总体呈上升趋势;(2)植被碳储量受坡度和人为因素影响,不同坡度区间植被碳密度有差异,如0.46°~ 8.32°缓坡区域植被碳密度较高,而30.45°~48.82°陡坡区域碳密度相对较低;(3)植被碳储量与植被覆盖度呈正相关,变化趋势一致。研究填补了废弃矿山转型为城市公园过程中植被碳储量研究的空白,为矿山生态修复效果评价及当地“双碳社会”建设提供了科学依据和数据支持。
Abstract:Global climate change has attracted much attention to the study of ecosystem carbon storage, with vegetation carbon estimation after mine restoration emerging as a critical component for evaluating ecological restoration effectiveness and supporting the development of a “dual-carbon society”. Traditional methods for estimating vegetation carbon storage have limitations, while advances in remote sensing technology offer promising alternatives. The fractured mountain park in Jiaozuo City has caused serious damage to the ecological environment due to non-standard mining activities. Since 2005, the local government has invested in ecological restoration, using engineering models such as hanging net spray seeding and fish-scale pits to plant a large number of trees and shrubs, significantly improving the vegetation cove of the park. Using the GF-1 satellite data with a resolution of 2 m in 2013, 2018 and 2023, combined with the remote sensing and multiple linear regression model, the vegetation index and other characteristic factors were extracted, and the estimation model of carbon storage was constructed and tested. The results showed that the vegetation carbon storage in the park increased significantly from 2013 to 2018, from 1.56×103 t to 1.90×103 t, and slightly decreased to 1.78×103 t from 2018 to 2023. Vegetation carbon storage is affected by slope and human activities. There are differences in vegetation carbon density in different slope ranges. The vegetation carbon density is higher in the 0.46°−8.32° gentle slope area, while the carbon density is relatively low in the 30.45°− 48.82°steep slope area. Vegetation carbon storage is positively correlated with vegetation coverage, and the change trend was consistent. The research fills the gap in the study of vegetation carbon storage in urban parks transformed from abandoned mines, and provides scientific basis and data support for the evaluation of mine ecological restoration effects and the construction of local “dual-carbon society”.
-
Key words:
- GF-1 satellite image /
- RS-MLRM model /
- vegetation carbon storage /
- vegetation cover /
- Fengshan Park
-
-
表 1 主要植被指数计算公式
Table 1. Calculation formula for major vegetation indices
植被指数 数学符号 计算公式 比值植被指数(ratio vegetation index,RVI) ${I_{{\mathrm{RV}}}} $ $ {I_{{\mathrm{RV}}}} = \dfrac{{{\rho _{{\mathrm{NIR}}}}}}{{{\rho _{{\mathrm{RED}}}}}} $ 插值植被指数(interpolated vegetation index,DVI) ${I_{{\mathrm{DV}}}} $ $ {I_{{\mathrm{DV}}}} = {\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}} $ NDVI ${I_{{\mathrm{NDV}}}} $ $ {I_{{\mathrm{NDV}}}} = \dfrac{{{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}}}{{{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}}}} $ 土壤调整植被指数(soil adjusted vegetation index,SAVI) $ {I_{{\mathrm{SAV}}}} $ $ {I_{{\mathrm{SAV}}}} = (1 + L)\dfrac{{\left( {{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}} \right)}}{{\left( {{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}} + L} \right)}} $ 优化土壤调节植被指数(optimized soil adjusted vegetation index,OSAVI) ${I_{{\mathrm{OSAV}}}} $ $ {I_{{\mathrm{OSAV}}}} = (1 + 0.16)\dfrac{{\left( {{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}} \right)}}{{\left( {{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}} + 0.16} \right)}} $ 重归一化植被指数(renormalized difference vegetation index,RDVI) ${I_{{\mathrm{RDV}}}} $ $ {I_{{\mathrm{RDV}}}} = \dfrac{{{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}}}{{\sqrt {{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}}} }} $ 注: $ \rho_{\mathrm{NIR}} $ 和$ \rho_{\mathrm{RED}} $ 分别代表红外波段和红光波段的反射率,L为大气校正参数,L取0.5。表 2 乔灌木主要干生物量方程
Table 2. Equations for major stem biomass of trees and shrubs
树种 计算公式 侧柏[19] W干=125.31(D2H)0.733
W枝=137.403+12.887(D2H)
W叶=53.49+9.97(D2H)
W根=11.007(D2H)−160.386刺槐[20] lnW干=− 2.895531 +0.86764 ln(D2H)
lnW枝=−3.71916 +0.79079 ln(D2H)
lnW叶=−2.90872 +0.45739 ln(D2H)
lnW根=−2.16746 +0.63276 ln(D2H)火炬树[21] lgW= 2.3534 +0.6801l g(D2H)栾树[22] W=0.915+0.1D2H 雪松[22] W=1.26( 0.3721 D1.2928 +0.2805 D1.3313 )构树[22] W= 1.7519 (D2H)1.5784 阔叶树[23] W= 0.0396 (D2H)0.933针叶树[24] W= 0.0254 (D2H)0.948黄荆[25] W= 4052.84 −6982.50 D+3761.50 D2−518.76D3胡枝子[25] W=32.456+5.202(D2H) +24.479(D2H)2−3.751(D2H)3 其他灌木[26] W=100.71AC0.925 注: W为生物量,D为胸径,C为冠幅,H为株高,AC为冠幅面积,AC=πC1C2/4。 表 3 植被碳储量与单波段和复合段之间的相关系数
Table 3. Correlation coefficients between sample carbon stocks and single and composite bands
单波段和复合段 B2 B3 B4 B(4-2) B(3-2) B(4/2) 相关系数 −0.396 −0.379 0.645** 0.825** −0.262 0.945** 注:**表示p<0.01;*表示p<0.05(双尾);−表示负相关。 表 4 植被碳储量与植被指数之间的相关系数
Table 4. Correlation coefficients between carbon stocks and vegetation indices in the sample plots
植被指数 RVI DVI NDVI SAVI OSAVI RDVI 相关系数 0.868** 0.862** 0.983** 0.983** 0.983** 0.984** 表 5 植被碳储量与PCA和纹理特征之间的相关系数
Table 5. Correlation coefficients between sample site carbon stocks and PCA and texture characteristics
PC和纹理特征 PC Mean VA HOM CON DI EB SM COR 相关系数 −0.144 −0.306 0.193 −0.225 0.316 0.298 −0.032 −0.120 −0.098 表 6 回归模型与参数
Table 6. Regression model and the parameters
回归模型 方程 R2 调整后R2 F Sig 多元逐步回归模型 y= 0.0812 x−0.001x1+0.0150.965 0.908 405.94 0.00 一元线性模型 y=0.077x+0.015 0.895 0.864 743.94 0.00 二次曲线模型 y=0.009+0.095x-0.011x2 0.842 0.785 673.39 0.00 指数模型 y=−0.339e−0.287x+0.347 0.883 0.859 535.84 0.00 幂次方模型 y=0.093x0.785 0.832 0.776 472.46 0.00 对数模型 y=0.095+0.054lnx 0.876 0.847 492.40 0.00 表 7 缝山公园植被碳储量模型RE-RMSE评价表
Table 7. RE-RMSE evaluation of vegetation carbon stocks in Fengshan Park
样方 Bi/(g·m−2) $B_i' $ /(g·m−2)$I_{\mathrm{RE}} $ /%$I_{\mathrm{RMSE}} $ FSYF-02 5.34 5.58 4.46 10.68 FSYF-05 13.10 11.89 9.22 26.19 FSYF-16 14.53 15.85 9.11 29.06 FSYF-20 11.52 12.33 7.10 23.03 FSYF-22 9.05 8.42 6.92 18.09 FSYF-24 25.48 21.03 5.44 13.95 表 8 不同年份缝山公园植被碳储量
Table 8. Vegetation carbon stocks in Fengshan Park in different years
指标 2013年 2018年 2023年 植被碳储量/(103 t) 1.56 1.90 1.78 表 9 不同年份植被碳储量变化
Table 9. Changes of vegetation carbon storage in different years
年份 碳储量变化面积占比/% 碳储量年均变化量/t 增加 不变 减少 2013—2018年 60.52 2.24 37.23 68 2018—2023年 46.28 2.34 51.38 −24 2013—2023年 14.24 0.10 14.15 22 表 10 不同年份各植被覆盖度下植被碳储量
Table 10. Vegetation carbon storage under different vegetation cover in different years
年份 项目 低植被
覆盖度较低植被
覆盖度中等植被
覆盖度较高植被
覆盖度高植被
覆盖度2013年 比例/% 0.42 0.60 3.95 46.09 48.95 面积/km2 0.05 0.07 0.46 5.38 5.71 植被碳
储量/t0.6 1.39 35.50 591.68 931.07 2018年 比例/% 0.52 0.51 2.24 21.24 75.48 面积/km2 0.06 0.06 0.26 2.48 8.81 植被碳
储量/t0.60 1.26 21.70 287.57 1594.44 2023年 比例/% 0.68 0.89 2.89 26.20 69.34 面积/km2 0.08 0.10 0.34 3.06 8.09 植被碳
储量/t0.80 1.86 26.65 369.97 1399.90 表 11 不同坡度区间的植被碳密度
Table 11. Vegetation carbon density in different slope intervals
坡度/(°) 2013年植被
碳密度/(g·m−2)2018年植被
碳密度/(g·m−2)2023年植被
碳密度/(g·m−2)0.46~8.32 17.61 22.79 19.32 8.33~14.45 16.89 19.72 17.99 14.46~21.27 14.44 17.74 17.59 21.28~30.44 16.86 21.06 18.03 30.45~48.82 16.91 19.81 17.96 -
[1] 胡海波,刘佳璇,丁冬霞,等. 森林固碳计量方法研究综述[J]. 中南林业科技大学学报,2024,44(11):58 − 69. [HU Haibo,LIU Jiaxuan,DING Dongxia,et al. A review of measurement methods of forest carbon sequestration[J]. Journal of Central South University of Forestry & Technology,2024,44(11):58 − 69. (in Chinese with English abstract)]
HU Haibo, LIU Jiaxuan, DING Dongxia, et al. A review of measurement methods of forest carbon sequestration[J]. Journal of Central South University of Forestry & Technology, 2024, 44(11): 58 − 69. (in Chinese with English abstract)
[2] ERIKSSON L E B, SANTORO M, WIESMANN A, et al. Multitemporal JERS repeat-pass coherence for growing-stock volume estimation of Siberian forest[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41:1561 − 1570. doi: 10.1109/TGRS.2003.814131
[3] HÄRKÖNEN S,LEHTONEN A,EERIKÄINEN K,et al. Estimating forest carbon fluxes for large regions based on process-based modelling,NFI data and Landsat satellite images[J]. Forest Ecology and Management,2011,262(12):2364 − 2377. doi: 10.1016/j.foreco.2011.08.035
[4] 杨飞, 崔宽宽, 张成业, 等. 露天煤矿排土场长时序植被碳汇分级方法构建及分析[J]. 煤田地质与勘探,2024,52(5):139 − 150. [YANG Fei, CUI Kuankuan, ZHANG Chengye, et al. Construction and analysis of a method for grading long-term vegetation carbon sink in waste dumps of an open-pit coal mine[J]. Coal Geology & Exploration,2024,52(5):139 − 150. (in Chinese with English abstract)]
YANG Fei, CUI Kuankuan, ZHANG Chengye, et al. Construction and analysis of a method for grading long-term vegetation carbon sink in waste dumps of an open-pit coal mine[J]. Coal Geology & Exploration, 2024, 52(5): 139 − 150. (in Chinese with English abstract)
[5] SALES M H,SOUZA C M Jr,KYRIAKIDIS P C,et al. Improving spatial distribution estimation of forest biomass with geostatistics:A case study for Rondônia,Brazil[J]. Ecological Modelling,2007,205(1/2):221 − 230.
[6] 徐丽华,张结存,黄博,等. 基于QuickBird影像的城市森林碳储量遥感估测[J]. 应用生态学报,2014,25(10):2787 − 2793. [XU Lihua,ZHANG Jiecun,HUANG Bo,et al. Remote sensing estimation of urban forest carbon stocks based on QuickBird images[J]. Chinese Journal of Applied Ecology,2014,25(10):2787 − 2793. (in Chinese with English abstract)]
XU Lihua, ZHANG Jiecun, HUANG Bo, et al. Remote sensing estimation of urban forest carbon stocks based on QuickBird images[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2787 − 2793. (in Chinese with English abstract)
[7] 徐小军,周国模,杜华强,等. 样本分层对毛竹林地上部分碳储量估算精度的影响[J]. 林业科学,2013,49(6):18 − 24. [XU Xiaojun,ZHOU Guomo,DU Huaqiang,et al. Effects of sample plots stratification on estimation accuracy of aboveground carbon storage for Phyllostachys edulis forests[J]. Scientia Silvae Sinicae,2013,49(6):18 − 24. (in Chinese with English abstract)] doi: 10.11707/j.1001-7488.20130603
XU Xiaojun, ZHOU Guomo, DU Huaqiang, et al. Effects of sample plots stratification on estimation accuracy of aboveground carbon storage for Phyllostachys edulis forests[J]. Scientia Silvae Sinicae, 2013, 49(6): 18 − 24. (in Chinese with English abstract) doi: 10.11707/j.1001-7488.20130603
[8] BAIETTO A,HIRIGOYEN A,TORANZA C,et al. Carbon stock estimation in halophytic wooded savannas of Uruguay:An ecosystem approach[J]. Forest ecosystems,2024,11:100216. doi: 10.1016/j.fecs.2024.100216
[9] 王建步,张杰,马毅,等. 基于GF-1WFV的黄河口湿地植被碳储量估算研究[J]. 海洋科学进展,2019,37(1):75 − 83. [WANG Jianbu,ZHANG Jie,MA Yi,et al. Estimation of vegetation carbon storage in the Yellow River estuary wetland based on GF-1 WFV satellite image[J]. Advances in Marine Science,2019,37(1):75 − 83. (in Chinese with English abstract)]
WANG Jianbu, ZHANG Jie, MA Yi, et al. Estimation of vegetation carbon storage in the Yellow River estuary wetland based on GF-1 WFV satellite image[J]. Advances in Marine Science, 2019, 37(1): 75 − 83. (in Chinese with English abstract)
[10] BU Xiaoyan,DONG Suocheng,MI Wenbao,et al. Spatial-temporal change of carbon storage and sink of wetland ecosystem in arid regions,Ningxia Plain[J]. Atmospheric Environment,2019,204:89 − 101. doi: 10.1016/j.atmosenv.2019.02.019
[11] 汤煜,石铁矛,卜英杰,等. 城市绿地碳储量估算及空间分布特征[J]. 生态学杂志,2020,39(4):1387 − 1398. [TANG Yu,SHI Tiemao,BU Yingjie,et al. Estimation and spatial distribution of carbon storage in urban greenspace[J]. Chinese Journal of Ecology,2020,39(4):1387 − 1398. (in Chinese with English abstract)]
TANG Yu, SHI Tiemao, BU Yingjie, et al. Estimation and spatial distribution of carbon storage in urban greenspace[J]. Chinese Journal of Ecology, 2020, 39(4): 1387 − 1398. (in Chinese with English abstract)
[12] 金中昊,李喆,张冬冬,等. 破损山体不同复绿工程模式下生态修复效果评价——以焦作市缝山公园为例[J]. 湖南师范大学自然科学学报,2024,47(6):80 − 88. [JIN Zhonghao,LI Zhe,ZHANG Dongdong,et al. Evaluation of ecological restoration effect of damaged mountain under different greening project modes:Take Fengshan park in Jiaozuo as an example[J]. Journal of Natural Science of Hunan Normal University,2024,47(6):80 − 88. (in Chinese with English abstract)]
JIN Zhonghao, LI Zhe, ZHANG Dongdong, et al. Evaluation of ecological restoration effect of damaged mountain under different greening project modes: Take Fengshan park in Jiaozuo as an example[J]. Journal of Natural Science of Hunan Normal University, 2024, 47(6): 80 − 88. (in Chinese with English abstract)
[13] 王雪军,孙玉军. 基于遥感地学模型的辽宁省森林生物量和碳储量估测[J]. 林业资源管理,2011(1):100 − 105. [WANG Xuejun,SUN Yujun. Study on forest biomass and carbon sequestration survey in Liaoning province based on RS and genomic models[J]. Forest Resources Management,2011(1):100 − 105. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-6622.2011.01.020
WANG Xuejun, SUN Yujun. Study on forest biomass and carbon sequestration survey in Liaoning province based on RS and genomic models[J]. Forest Resources Management, 2011(1): 100 − 105. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6622.2011.01.020
[14] HASHEMI S A,FALLAH CHAI M M,BAYAT S. An analysis of vegetation indices in relation to tree species diversity using by satellite data in the northern forests of Iran[J]. Arabian Journal of Geosciences,2013,6(9):3363 − 3369. doi: 10.1007/s12517-012-0576-8
[15] CUI Lu,ZHAO Yonghua,LIU Jianchao,et al. Vegetation coverage prediction for the Qinling mountains using the CA–Markov model[J]. International Journal of Geo-Information,2021,10(10):679. doi: 10.3390/ijgi10100679
[16] 万五星,王效科,李东义,等. 暖温带森林生态系统林下灌木生物量相对生长模型[J]. 生态学报,2014,34(23):6985 − 6992. [WAN Wuxing,WANG Xiaoke,LI Dongyi,et al. Biomass allometric models for understory shrubs of warm temperate forest ecosystem[J]. Acta Ecologica Sinica,2014,34(23):6985 − 6992. (in Chinese with English abstract)]
WAN Wuxing, WANG Xiaoke, LI Dongyi, et al. Biomass allometric models for understory shrubs of warm temperate forest ecosystem[J]. Acta Ecologica Sinica, 2014, 34(23): 6985 − 6992. (in Chinese with English abstract)
[17] 陈修官. 20年生杉木人工林干物质积累及相对生长模型研究[J]. 防护林科技,2007(4):28 − 29. [CHEN Xiuguan. Dm accumulation and growth model of Cunninghamia lanceolata plantation[J]. Protection Forest Science and Technology,2007(4):28 − 29. (in Chinese with English abstract)] doi: 10.3969/j.issn.1005-5215.2007.04.010
CHEN Xiuguan. Dm accumulation and growth model of Cunninghamia lanceolata plantation[J]. Protection Forest Science and Technology, 2007(4): 28 − 29. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-5215.2007.04.010
[18] 国家林业局. 造林项目碳汇计量监测指南: LY/T 2253—2014[S]. 北京:中国标准出版社,2014. [State Forestry Administration of the People’s Republic of China. Guidelines on carbon accounting and monitoring for afforestation project:LY/T 2253—2014[S]. Beijing:Standards Press of China, 2014. (in Chinese)]
State Forestry Administration of the People’s Republic of China. Guidelines on carbon accounting and monitoring for afforestation project: LY/T 2253—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
[19] 陈灵芝,陈清朗,鲍显诚,等. 北京山区的侧柏林(Platycladus orientalis)及其生物量研究[J]. 植物生态学与地植物学学报,1986,10(1):17 − 25. [CHEN Lingzhi,CHEN Qinglang,BAO Xiancheng,et al. Studies on Chinese arborvitae (Platycladus orientalis) forest and its biomass in beijing[J]. Acta Phytoecologica et Geobotanica Sinica,1986,10(1):17 − 25. (in Chinese with English abstract)]
CHEN Lingzhi, CHEN Qinglang, BAO Xiancheng, et al. Studies on Chinese arborvitae (Platycladus orientalis) forest and its biomass in beijing[J]. Acta Phytoecologica et Geobotanica Sinica, 1986, 10(1): 17 − 25. (in Chinese with English abstract)
[20] 毕君,黄则舟,王振亮. 刺槐单株生物量动态研究[J]. 河北林学院学报,1993,8(4):278 − 282. [BI Jun,HUANG Zezhou,WANG Zhenliang. Studies on biomass dynamic of black loclust tree[J]. Journal of Hebei Forestry College,1993,8(4):278 − 282. (in Chinese with English abstract)]
BI Jun, HUANG Zezhou, WANG Zhenliang. Studies on biomass dynamic of black loclust tree[J]. Journal of Hebei Forestry College, 1993, 8(4): 278 − 282. (in Chinese with English abstract)
[21] 高喜荣,赵辉,杨海青,等. 太行山低山丘陵区外来种火炬树群落生物量与碳贮量[J]. 中南林业科技大学学报,2012,32(12):172 − 175. [GAO Xirong,ZHAO Hui,YANG Haiqing,et al. Biomass and carbon storage of Rhus typhina in hilly area of Taihang Mountain[J]. Journal of Central South University of Forestry & Technology,2012,32(12):172 − 175. (in Chinese with English abstract)]
GAO Xirong, ZHAO Hui, YANG Haiqing, et al. Biomass and carbon storage of Rhus typhina in hilly area of Taihang Mountain[J]. Journal of Central South University of Forestry & Technology, 2012, 32(12): 172 − 175. (in Chinese with English abstract)
[22] JO H K,KIM J Y,PARK H M. Carbon reduction and planning strategies for urban parks in Seoul[J]. Urban Forestry & Urban Greening,2019,41:48 − 54.
[23] 刘国华,傅伯杰,方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报,2000,20(5):733 − 740. [LIU Guohua,FU Bojie,FANG Jingyun. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecologica Sinica,2000,20(5):733 − 740. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0933.2000.05.004
LIU Guohua, FU Bojie, FANG Jingyun. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecologica Sinica, 2000, 20(5): 733 − 740. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0933.2000.05.004
[24] 王如松,方精云,高林,等. 现代生态学的热点问题研究[M]. 北京:中国科学技术出版社,1996. [WANG Rusong,FANG Jingyun,GAO Lin,et al. Research on hot issues of modern ecology[M]. Beijing:China Science and Technology Press,1996. (in Chinese)]
WANG Rusong, FANG Jingyun, GAO Lin, et al. Research on hot issues of modern ecology[M]. Beijing: China Science and Technology Press, 1996. (in Chinese)
[25] 黎燕琼,郑绍伟,龚固堂,等. 不同年龄柏木混交林下主要灌木黄荆生物量及分配格局[J]. 生态学报,2010,30(11):2809 − 2818. [LI Yanqiong,ZHENG Shaowei,GONG Gutang,et al. Biomass and its allocation of undergrowth Vitex negundo L. in different age classes of mixed cypress forest[J]. Acta Ecologica Sinica,2010,30(11):2809 − 2818. (in Chinese with English abstract)]
LI Yanqiong, ZHENG Shaowei, GONG Gutang, et al. Biomass and its allocation of undergrowth Vitex negundo L. in different age classes of mixed cypress forest[J]. Acta Ecologica Sinica, 2010, 30(11): 2809 − 2818. (in Chinese with English abstract)
[26] 吴光明. 森林资源抽样调查中样地数量与精度计算[J]. 现代农业科技,2016(9):173 − 174. [WU Guangming. Calculation method of quantity and precision of sampling survey in forest resource survey[J]. Modern Agricultural Science and Technology,2016(9):173 − 174. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-5739.2016.09.105
WU Guangming. Calculation method of quantity and precision of sampling survey in forest resource survey[J]. Modern Agricultural Science and Technology, 2016(9): 173 − 174. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-5739.2016.09.105
[27] 卜晓燕. 银川平原不同类型湿地碳汇评估研究[D]. 银川:宁夏大学,2016. [BU Xiaoyan. Research of evaluation on carbon sequestration for different types of wetlands in Yinchuan Plain[D]. Yinchuan:Ningxia University,2016. (in Chinese with English abstract)]
BU Xiaoyan. Research of evaluation on carbon sequestration for different types of wetlands in Yinchuan Plain[D]. Yinchuan: Ningxia University, 2016. (in Chinese with English abstract)
[28] FANG J,CHEN A,PENG C,et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,292(5525):2320 − 2322. doi: 10.1126/science.1058629
[29] NOWAK D J,GREENFIELD E J,HOEHN R E,et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution,2013,178:229 − 236. doi: 10.1016/j.envpol.2013.03.019
[30] 殷炜达,苏俊伊,许卓亚,等. 基于遥感技术的城市绿地碳储量估算应用[J]. 风景园林,2022,29(5):24 − 30. [YIN Weida,SU Junyi,XU Zhuoya,et al. Estimation and application of urban green space carbon storage based on remote sensing technology[J]. Landscape Architecture,2022,29(5):24 − 30. (in Chinese with English abstract)]
YIN Weida, SU Junyi, XU Zhuoya, et al. Estimation and application of urban green space carbon storage based on remote sensing technology[J]. Landscape Architecture, 2022, 29(5): 24 − 30. (in Chinese with English abstract)
[31] 吕美蓉,任国兴,李雪莹,等. 可见-近红外光谱的潮间带沉积物有机碳含量的几种模型预测方法[J]. 光谱学与光谱分析,2020,40(4):1082 − 1086. [LV Meirong,REN Guoxing,LI Xueying,et al. Prediction of organic carbon content of intertidal sediments based on visible-near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(4):1082 − 1086. (in Chinese with English abstract)]
LV Meirong, REN Guoxing, LI Xueying, et al. Prediction of organic carbon content of intertidal sediments based on visible-near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1082 − 1086. (in Chinese with English abstract)
[32] 韩云亭,李思悦,罗协. 基于GF-2影像的武汉市九峰山国家森林公园地上碳储量估算[J]. 地质通报,2024,43(4):611 − 619. [HAN Yunting,LI Siyue,LUO Xie. Estimation of above-ground carbon storage in the Jiufengshan National Forest Park of Wuhan based on GF-2 images[J]. Geological Bulletin of China,2024,43(4):611 − 619. (in Chinese with English abstract)] doi: 10.12097/gbc.2023.07.034
HAN Yunting, LI Siyue, LUO Xie. Estimation of above-ground carbon storage in the Jiufengshan National Forest Park of Wuhan based on GF-2 images[J]. Geological Bulletin of China, 2024, 43(4): 611 − 619. (in Chinese with English abstract) doi: 10.12097/gbc.2023.07.034
[33] 张婷婷,石昊,芦晓峰,等. 辽河口湿地自然植被碳储量研究[J]. 人民黄河,2020,42(10):92 − 95. [ZHANG Tingting,SHI Hao,LU Xiaofeng,et al. Study on carbon reserves of natural vegetation in Liaohe river estuary wetland[J]. Yellow River,2020,42(10):92 − 95. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1379.2020.10.019
ZHANG Tingting, SHI Hao, LU Xiaofeng, et al. Study on carbon reserves of natural vegetation in Liaohe river estuary wetland[J]. Yellow River, 2020, 42(10): 92 − 95. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2020.10.019
[34] WANG Yan,WANG Qixiang,WANG Mengben. Similar carbon density of natural and planted forests in the Lüliang Mountains,China[J]. Annals of Forest Science,2018,75(3):87. doi: 10.1007/s13595-018-0753-3
[35] 苏军德. 矿山废弃地生态修复区植被碳库研究[J]. 水土保持通报,2018,38(5):234 − 237. [SU Junde. A study on vegetation carbon storage in ecological restoration area of abandoned mines[J]. Bulletin of Soil and Water Conservation,2018,38(5):234 − 237. (in Chinese with English abstract)]
SU Junde. A study on vegetation carbon storage in ecological restoration area of abandoned mines[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 234 − 237. (in Chinese with English abstract)
[36] LIAO Zhanmang,YUE Chao,HE Binbin,et al. Growing biomass carbon stock in China driven by expansion and conservation of woody areas[J]. Nature Geoscience,2024,17(11):1127 − 1134. doi: 10.1038/s41561-024-01569-0
[37] 胡茸茸,郭杨,欧阳勋志,等. 赣中杉木林碳密度空间分布格局及其影响因素[J]. 生态学杂志,2025,44(2):365 − 372. [HU Rongrong,GUO Yang,OUYANG Xunzhi,et al. Spatial distribution pattern of carbon density and its influencing factors of Cunninghamia lanceolata plantations in central Jiangxi[J]. Chinese Journal of Ecology,2025,44(2):365 − 372. (in Chinese with English abstract)]
HU Rongrong, GUO Yang, OUYANG Xunzhi, et al. Spatial distribution pattern of carbon density and its influencing factors of Cunninghamia lanceolata plantations in central Jiangxi[J]. Chinese Journal of Ecology, 2025, 44(2): 365 − 372. (in Chinese with English abstract)
[38] 郝旺林. 黄土丘陵区土壤CO2排放对水蚀的响应及模拟研究[D]. 杨陵:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2022. [[HAO Wanglin. Response and modeling of soil CO2,emission to water erosion in loess hilly areas[D]. Yangling:University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment,Chinese Academy of Sciences and Ministry of Education),2022. (in Chinese with English abstract)]]
[HAO Wanglin. Response and modeling of soil CO2, emission to water erosion in loess hilly areas[D]. Yangling: University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education), 2022. (in Chinese with English abstract)]
[39] 梁森,张建军,王柯,等. 区域生态保护修复碳汇潜力评估方法与应用——基于第一批山水林田湖草生态保护修复工程的研究[J]. 生态学报,2023,43(9):3517 − 3531. [LIANG Sen,ZHANG Jianjun,WANG Ke,et al. Methodology and application of carbon sink potential assessment for regional ecological conservation and restoration:Based on the research of the first batch of pilots for ecological protection and restoration project of mountains-rivers-forests-farmlands[J]. Acta Ecologica Sinica,2023,43(9):3517 − 3531. (in Chinese with English abstract)]
LIANG Sen, ZHANG Jianjun, WANG Ke, et al. Methodology and application of carbon sink potential assessment for regional ecological conservation and restoration: Based on the research of the first batch of pilots for ecological protection and restoration project of mountains-rivers-forests-farmlands[J]. Acta Ecologica Sinica, 2023, 43(9): 3517 − 3531. (in Chinese with English abstract)
[40] 肖烨,黄志刚,令玉林,等. 赤水河流域不同植被恢复类型土壤有机碳储量特征及其影响因素[J]. 土壤通报,2024,55(6):1636 − 1646. [XIAO Ye,HUANG Zhigang,LING Yulin,et al. Characteristics and influencing factors of Soil organic carbon storage in different vegetation restoration types in the Chishui River Basin[J]. Chinese Journal of Soil Science,2024,55(6):1636 − 1646. (in Chinese with English abstract)]
XIAO Ye, HUANG Zhigang, LING Yulin, et al. Characteristics and influencing factors of Soil organic carbon storage in different vegetation restoration types in the Chishui River Basin[J]. Chinese Journal of Soil Science, 2024, 55(6): 1636 − 1646. (in Chinese with English abstract)
[41] 叶小曼,魏天兴,于欢,等. 黄土丘陵区典型森林生态系统碳储量及其影响因素[J]. 生态学杂志,2025,44(5):1409 − 1416. [YE Xiaoman,WEI Tianxing,YU Huan,et al. Carbon storage and its influencing factors of typical forest ecosystems in the loess hilly region[J]. Journal of Ecology,2025,44(5):1409 − 1416.(in Chinese with English abstract)]
YE Xiaoman, WEI Tianxing, YU Huan, et al. Carbon storage and its influencing factors of typical forest ecosystems in the loess hilly region[J]. Journal of Ecology, 2025, 44(5): 1409 − 1416.(in Chinese with English abstract)
[42] 邓念东,张硕伦,梁毅轩,等. 黄土边坡植被恢复技术研究进展[J]. 科学技术与工程,2025,25(2):448 − 458. [DENG Niandong,ZHANG Shuolun,LIANG Yixuan,et al. Research progress in vegetation restoration technology for loess slopes[J]. Science Technology and Engineering,2025,25(2):448 − 458. (in Chinese with English abstract)] doi: 10.12404/j.issn.1671-1815.2309443
DENG Niandong, ZHANG Shuolun, LIANG Yixuan, et al. Research progress in vegetation restoration technology for loess slopes[J]. Science Technology and Engineering, 2025, 25(2): 448 − 458. (in Chinese with English abstract) doi: 10.12404/j.issn.1671-1815.2309443
-