焦作缝山公园植被遥感监测与碳储量变化分析

郑二文, 李喆, 王萍, 金中昊, 宁立波. 焦作缝山公园植被遥感监测与碳储量变化分析[J]. 水文地质工程地质, 2025, 52(4): 75-86. doi: 10.16030/j.cnki.issn.1000-3665.202501047
引用本文: 郑二文, 李喆, 王萍, 金中昊, 宁立波. 焦作缝山公园植被遥感监测与碳储量变化分析[J]. 水文地质工程地质, 2025, 52(4): 75-86. doi: 10.16030/j.cnki.issn.1000-3665.202501047
ZHENG Erwen, LI Zhe, WANG Ping, JIN Zhonghao, NING Libo. Remote sensing monitoring of vegetation and analysis of carbon storage changes in Fengshan Park, Jiaozuo[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 75-86. doi: 10.16030/j.cnki.issn.1000-3665.202501047
Citation: ZHENG Erwen, LI Zhe, WANG Ping, JIN Zhonghao, NING Libo. Remote sensing monitoring of vegetation and analysis of carbon storage changes in Fengshan Park, Jiaozuo[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 75-86. doi: 10.16030/j.cnki.issn.1000-3665.202501047

焦作缝山公园植被遥感监测与碳储量变化分析

详细信息
    作者简介: 郑二文(1997—),女,硕士,主要从事生态学相关研究。E-mail:2544189956@qq.com
  • 中图分类号: TD167;X87

Remote sensing monitoring of vegetation and analysis of carbon storage changes in Fengshan Park, Jiaozuo

  • 全球气候变化使生态系统碳储量研究备受关注,矿山修复后植被碳储量核算是生态修复效果评价的关键内容之一,也是建设“双碳社会”的需要。传统植被碳储量估算方法存在局限,而遥感技术和地理信息系统等的发展为该研究提供了新方向。焦作市缝山公园曾因不规范矿山开采活动导致生态环境严重破坏,自2005年始,当地政府投入资金进行生态修复,采用挂网喷播复绿、鱼鳞坑复绿等修复工程模式,种植大量乔灌木,使公园植被覆盖度显著提升。研究利用2013年、2018年、2023年3期2 m分辨率的高分1号卫星数据,结合遥感 - 多元线性回归模型,通过样地调查与取样,结合遥感数据预处理,提取植被指数等特征因子,构建并检验植被碳储量估测模型。结果表明:(1)公园植被碳储量在2013— 2018年明显增加,从1.56×103 t增加到1.90×103 t,2018 —2023年轻微减少至1.78×103 t,10 a间总体呈上升趋势;(2)植被碳储量受坡度和人为因素影响,不同坡度区间植被碳密度有差异,如0.46°~ 8.32°缓坡区域植被碳密度较高,而30.45°~48.82°陡坡区域碳密度相对较低;(3)植被碳储量与植被覆盖度呈正相关,变化趋势一致。研究填补了废弃矿山转型为城市公园过程中植被碳储量研究的空白,为矿山生态修复效果评价及当地“双碳社会”建设提供了科学依据和数据支持。

  • 加载中
  • 图 1  样方点位图

    Figure 1. 

    图 2  一元线性模型回归标准化残差的正态P-P

    Figure 2. 

    图 3  多元逐步回归模型回归标准化残差正态P-P

    Figure 3. 

    图 4  不同年份植被碳储量空间分布图

    Figure 4. 

    图 5  不同年份植被碳储量分布变化图

    Figure 5. 

    图 6  2013年、2018年、2023年植被覆盖度等级空间分布

    Figure 6. 

    图 7  不同坡度区间植被碳密度变化图

    Figure 7. 

    表 1  主要植被指数计算公式

    Table 1.  Calculation formula for major vegetation indices

    植被指数 数学符号 计算公式
    比值植被指数(ratio vegetation index,RVI) ${I_{{\mathrm{RV}}}} $ $ {I_{{\mathrm{RV}}}} = \dfrac{{{\rho _{{\mathrm{NIR}}}}}}{{{\rho _{{\mathrm{RED}}}}}} $
    插值植被指数(interpolated vegetation index,DVI) ${I_{{\mathrm{DV}}}} $ $ {I_{{\mathrm{DV}}}} = {\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}} $
    NDVI ${I_{{\mathrm{NDV}}}} $ $ {I_{{\mathrm{NDV}}}} = \dfrac{{{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}}}{{{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}}}} $
    土壤调整植被指数(soil adjusted vegetation index,SAVI) $ {I_{{\mathrm{SAV}}}} $ $ {I_{{\mathrm{SAV}}}} = (1 + L)\dfrac{{\left( {{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}} \right)}}{{\left( {{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}} + L} \right)}} $
    优化土壤调节植被指数(optimized soil adjusted vegetation index,OSAVI) ${I_{{\mathrm{OSAV}}}} $ $ {I_{{\mathrm{OSAV}}}} = (1 + 0.16)\dfrac{{\left( {{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}} \right)}}{{\left( {{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}} + 0.16} \right)}} $
    重归一化植被指数(renormalized difference vegetation index,RDVI) ${I_{{\mathrm{RDV}}}} $ $ {I_{{\mathrm{RDV}}}} = \dfrac{{{\rho _{{\mathrm{NIR}}}} - {\rho _{{\mathrm{RED}}}}}}{{\sqrt {{\rho _{{\mathrm{NIR}}}} + {\rho _{{\mathrm{RED}}}}} }} $
      注:$ \rho_{\mathrm{NIR}} $$ \rho_{\mathrm{RED}} $分别代表红外波段和红光波段的反射率,L为大气校正参数,L取0.5。
    下载: 导出CSV

    表 2  乔灌木主要干生物量方程

    Table 2.  Equations for major stem biomass of trees and shrubs

    树种 计算公式
    侧柏[19] W=125.31(D2H)0.733
    W=137.403+12.887(D2H)
    W=53.49+9.97(D2H)
    W=11.007(D2H)−160.386
    刺槐[20] lnW=−2.895531+0.86764ln(D2H)
    lnW=−3.71916+0.79079ln(D2H)
    lnW=−2.90872+0.45739ln(D2H)
    lnW=−2.16746+0.63276ln(D2H)
    火炬树[21] lgW=2.3534+0.6801lg(D2H)
    栾树[22] W=0.915+0.1D2H
    雪松[22] W=1.26(0.3721D1.2928+0.2805D1.3313)
    构树[22] W=1.7519 (D2H)1.5784
    阔叶树[23] W=0.0396(D2H)0.933
    针叶树[24] W=0.0254(D2H)0.948
    黄荆[25] W=4052.846982.50D+3761.50D2−518.76D3
    胡枝子[25] W=32.456+5.202(D2H) +24.479(D2H)2−3.751(D2H)3
    其他灌木[26] W=100.71AC0.925
      注: W为生物量,D为胸径,C为冠幅,H为株高,AC为冠幅面积,ACC1C2/4。
    下载: 导出CSV

    表 3  植被碳储量与单波段和复合段之间的相关系数

    Table 3.  Correlation coefficients between sample carbon stocks and single and composite bands

    单波段和复合段 B2 B3 B4 B(4-2) B(3-2) B(4/2)
    相关系数 −0.396 −0.379 0.645** 0.825** −0.262 0.945**
      注:**表示p<0.01;*表示p<0.05(双尾);−表示负相关。
    下载: 导出CSV

    表 4  植被碳储量与植被指数之间的相关系数

    Table 4.  Correlation coefficients between carbon stocks and vegetation indices in the sample plots

    植被指数RVIDVINDVISAVIOSAVIRDVI
    相关系数0.868**0.862**0.983**0.983**0.983**0.984**
    下载: 导出CSV

    表 5  植被碳储量与PCA和纹理特征之间的相关系数

    Table 5.  Correlation coefficients between sample site carbon stocks and PCA and texture characteristics

    PC和纹理特征 PC Mean VA HOM CON DI EB SM COR
    相关系数 −0.144 −0.306 0.193 −0.225 0.316 0.298 −0.032 −0.120 −0.098
    下载: 导出CSV

    表 6  回归模型与参数

    Table 6.  Regression model and the parameters

    回归模型 方程 R2 调整后R2 F Sig
    多元逐步回归模型 y=0.0812x−0.001x1+0.015 0.965 0.908 405.94 0.00
    一元线性模型 y=0.077x+0.015 0.895 0.864 743.94 0.00
    二次曲线模型 y=0.009+0.095x-0.011x2 0.842 0.785 673.39 0.00
    指数模型 y=−0.339e−0.287x+0.347 0.883 0.859 535.84 0.00
    幂次方模型 y=0.093x0.785 0.832 0.776 472.46 0.00
    对数模型 y=0.095+0.054lnx 0.876 0.847 492.40 0.00
    下载: 导出CSV

    表 7  缝山公园植被碳储量模型RE-RMSE评价表

    Table 7.  RE-RMSE evaluation of vegetation carbon stocks in Fengshan Park

    样方 Bi/(g·m−2 $B_i' $/(g·m−2 $I_{\mathrm{RE}} $/% $I_{\mathrm{RMSE}} $
    FSYF-02 5.34 5.58 4.46 10.68
    FSYF-05 13.10 11.89 9.22 26.19
    FSYF-16 14.53 15.85 9.11 29.06
    FSYF-20 11.52 12.33 7.10 23.03
    FSYF-22 9.05 8.42 6.92 18.09
    FSYF-24 25.48 21.03 5.44 13.95
    下载: 导出CSV

    表 8  不同年份缝山公园植被碳储量

    Table 8.  Vegetation carbon stocks in Fengshan Park in different years

    指标 2013年 2018年 2023年
    植被碳储量/(103 t) 1.56 1.90 1.78
    下载: 导出CSV

    表 9  不同年份植被碳储量变化

    Table 9.  Changes of vegetation carbon storage in different years

    年份 碳储量变化面积占比/% 碳储量年均变化量/t
    增加 不变 减少
    2013—2018年 60.52 2.24 37.23 68
    2018—2023年 46.28 2.34 51.38 −24
    2013—2023年 14.24 0.10 14.15 22
    下载: 导出CSV

    表 10  不同年份各植被覆盖度下植被碳储量

    Table 10.  Vegetation carbon storage under different vegetation cover in different years

    年份 项目 低植被
    覆盖度
    较低植被
    覆盖度
    中等植被
    覆盖度
    较高植被
    覆盖度
    高植被
    覆盖度
    2013年 比例/% 0.42 0.60 3.95 46.09 48.95
    面积/km2 0.05 0.07 0.46 5.38 5.71
    植被碳
    储量/t
    0.6 1.39 35.50 591.68 931.07
    2018年 比例/% 0.52 0.51 2.24 21.24 75.48
    面积/km2 0.06 0.06 0.26 2.48 8.81
    植被碳
    储量/t
    0.60 1.26 21.70 287.57 1594.44
    2023年 比例/% 0.68 0.89 2.89 26.20 69.34
    面积/km2 0.08 0.10 0.34 3.06 8.09
    植被碳
    储量/t
    0.80 1.86 26.65 369.97 1399.90
    下载: 导出CSV

    表 11  不同坡度区间的植被碳密度

    Table 11.  Vegetation carbon density in different slope intervals

    坡度/(°) 2013年植被
    碳密度/(g·m−2
    2018年植被
    碳密度/(g·m−2
    2023年植被
    碳密度/(g·m−2
    0.46~8.32 17.61 22.79 19.32
    8.33~14.45 16.89 19.72 17.99
    14.46~21.27 14.44 17.74 17.59
    21.28~30.44 16.86 21.06 18.03
    30.45~48.82 16.91 19.81 17.96
    下载: 导出CSV
  • [1]

    胡海波,刘佳璇,丁冬霞,等. 森林固碳计量方法研究综述[J]. 中南林业科技大学学报,2024,44(11):58 − 69. [HU Haibo,LIU Jiaxuan,DING Dongxia,et al. A review of measurement methods of forest carbon sequestration[J]. Journal of Central South University of Forestry & Technology,2024,44(11):58 − 69. (in Chinese with English abstract)]

    HU Haibo, LIU Jiaxuan, DING Dongxia, et al. A review of measurement methods of forest carbon sequestration[J]. Journal of Central South University of Forestry & Technology, 2024, 44(11): 58 − 69. (in Chinese with English abstract)

    [2]

    ERIKSSON L E B, SANTORO M, WIESMANN A, et al. Multitemporal JERS repeat-pass coherence for growing-stock volume estimation of Siberian forest[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41:1561 − 1570. doi: 10.1109/TGRS.2003.814131

    [3]

    HÄRKÖNEN S,LEHTONEN A,EERIKÄINEN K,et al. Estimating forest carbon fluxes for large regions based on process-based modelling,NFI data and Landsat satellite images[J]. Forest Ecology and Management,2011,262(12):2364 − 2377. doi: 10.1016/j.foreco.2011.08.035

    [4]

    杨飞, 崔宽宽, 张成业, 等. 露天煤矿排土场长时序植被碳汇分级方法构建及分析[J]. 煤田地质与勘探,2024,52(5):139 − 150. [YANG Fei, CUI Kuankuan, ZHANG Chengye, et al. Construction and analysis of a method for grading long-term vegetation carbon sink in waste dumps of an open-pit coal mine[J]. Coal Geology & Exploration,2024,52(5):139 − 150. (in Chinese with English abstract)]

    YANG Fei, CUI Kuankuan, ZHANG Chengye, et al. Construction and analysis of a method for grading long-term vegetation carbon sink in waste dumps of an open-pit coal mine[J]. Coal Geology & Exploration, 2024, 52(5): 139 − 150. (in Chinese with English abstract)

    [5]

    SALES M H,SOUZA C M Jr,KYRIAKIDIS P C,et al. Improving spatial distribution estimation of forest biomass with geostatistics:A case study for Rondônia,Brazil[J]. Ecological Modelling,2007,205(1/2):221 − 230.

    [6]

    徐丽华,张结存,黄博,等. 基于QuickBird影像的城市森林碳储量遥感估测[J]. 应用生态学报,2014,25(10):2787 − 2793. [XU Lihua,ZHANG Jiecun,HUANG Bo,et al. Remote sensing estimation of urban forest carbon stocks based on QuickBird images[J]. Chinese Journal of Applied Ecology,2014,25(10):2787 − 2793. (in Chinese with English abstract)]

    XU Lihua, ZHANG Jiecun, HUANG Bo, et al. Remote sensing estimation of urban forest carbon stocks based on QuickBird images[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2787 − 2793. (in Chinese with English abstract)

    [7]

    徐小军,周国模,杜华强,等. 样本分层对毛竹林地上部分碳储量估算精度的影响[J]. 林业科学,2013,49(6):18 − 24. [XU Xiaojun,ZHOU Guomo,DU Huaqiang,et al. Effects of sample plots stratification on estimation accuracy of aboveground carbon storage for Phyllostachys edulis forests[J]. Scientia Silvae Sinicae,2013,49(6):18 − 24. (in Chinese with English abstract)] doi: 10.11707/j.1001-7488.20130603

    XU Xiaojun, ZHOU Guomo, DU Huaqiang, et al. Effects of sample plots stratification on estimation accuracy of aboveground carbon storage for Phyllostachys edulis forests[J]. Scientia Silvae Sinicae, 2013, 49(6): 18 − 24. (in Chinese with English abstract) doi: 10.11707/j.1001-7488.20130603

    [8]

    BAIETTO A,HIRIGOYEN A,TORANZA C,et al. Carbon stock estimation in halophytic wooded savannas of Uruguay:An ecosystem approach[J]. Forest ecosystems,2024,11:100216. doi: 10.1016/j.fecs.2024.100216

    [9]

    王建步,张杰,马毅,等. 基于GF-1WFV的黄河口湿地植被碳储量估算研究[J]. 海洋科学进展,2019,37(1):75 − 83. [WANG Jianbu,ZHANG Jie,MA Yi,et al. Estimation of vegetation carbon storage in the Yellow River estuary wetland based on GF-1 WFV satellite image[J]. Advances in Marine Science,2019,37(1):75 − 83. (in Chinese with English abstract)]

    WANG Jianbu, ZHANG Jie, MA Yi, et al. Estimation of vegetation carbon storage in the Yellow River estuary wetland based on GF-1 WFV satellite image[J]. Advances in Marine Science, 2019, 37(1): 75 − 83. (in Chinese with English abstract)

    [10]

    BU Xiaoyan,DONG Suocheng,MI Wenbao,et al. Spatial-temporal change of carbon storage and sink of wetland ecosystem in arid regions,Ningxia Plain[J]. Atmospheric Environment,2019,204:89 − 101. doi: 10.1016/j.atmosenv.2019.02.019

    [11]

    汤煜,石铁矛,卜英杰,等. 城市绿地碳储量估算及空间分布特征[J]. 生态学杂志,2020,39(4):1387 − 1398. [TANG Yu,SHI Tiemao,BU Yingjie,et al. Estimation and spatial distribution of carbon storage in urban greenspace[J]. Chinese Journal of Ecology,2020,39(4):1387 − 1398. (in Chinese with English abstract)]

    TANG Yu, SHI Tiemao, BU Yingjie, et al. Estimation and spatial distribution of carbon storage in urban greenspace[J]. Chinese Journal of Ecology, 2020, 39(4): 1387 − 1398. (in Chinese with English abstract)

    [12]

    金中昊,李喆,张冬冬,等. 破损山体不同复绿工程模式下生态修复效果评价——以焦作市缝山公园为例[J]. 湖南师范大学自然科学学报,2024,47(6):80 − 88. [JIN Zhonghao,LI Zhe,ZHANG Dongdong,et al. Evaluation of ecological restoration effect of damaged mountain under different greening project modes:Take Fengshan park in Jiaozuo as an example[J]. Journal of Natural Science of Hunan Normal University,2024,47(6):80 − 88. (in Chinese with English abstract)]

    JIN Zhonghao, LI Zhe, ZHANG Dongdong, et al. Evaluation of ecological restoration effect of damaged mountain under different greening project modes: Take Fengshan park in Jiaozuo as an example[J]. Journal of Natural Science of Hunan Normal University, 2024, 47(6): 80 − 88. (in Chinese with English abstract)

    [13]

    王雪军,孙玉军. 基于遥感地学模型的辽宁省森林生物量和碳储量估测[J]. 林业资源管理,2011(1):100 − 105. [WANG Xuejun,SUN Yujun. Study on forest biomass and carbon sequestration survey in Liaoning province based on RS and genomic models[J]. Forest Resources Management,2011(1):100 − 105. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-6622.2011.01.020

    WANG Xuejun, SUN Yujun. Study on forest biomass and carbon sequestration survey in Liaoning province based on RS and genomic models[J]. Forest Resources Management, 2011(1): 100 − 105. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6622.2011.01.020

    [14]

    HASHEMI S A,FALLAH CHAI M M,BAYAT S. An analysis of vegetation indices in relation to tree species diversity using by satellite data in the northern forests of Iran[J]. Arabian Journal of Geosciences,2013,6(9):3363 − 3369. doi: 10.1007/s12517-012-0576-8

    [15]

    CUI Lu,ZHAO Yonghua,LIU Jianchao,et al. Vegetation coverage prediction for the Qinling mountains using the CA–Markov model[J]. International Journal of Geo-Information,2021,10(10):679. doi: 10.3390/ijgi10100679

    [16]

    万五星,王效科,李东义,等. 暖温带森林生态系统林下灌木生物量相对生长模型[J]. 生态学报,2014,34(23):6985 − 6992. [WAN Wuxing,WANG Xiaoke,LI Dongyi,et al. Biomass allometric models for understory shrubs of warm temperate forest ecosystem[J]. Acta Ecologica Sinica,2014,34(23):6985 − 6992. (in Chinese with English abstract)]

    WAN Wuxing, WANG Xiaoke, LI Dongyi, et al. Biomass allometric models for understory shrubs of warm temperate forest ecosystem[J]. Acta Ecologica Sinica, 2014, 34(23): 6985 − 6992. (in Chinese with English abstract)

    [17]

    陈修官. 20年生杉木人工林干物质积累及相对生长模型研究[J]. 防护林科技,2007(4):28 − 29. [CHEN Xiuguan. Dm accumulation and growth model of Cunninghamia lanceolata plantation[J]. Protection Forest Science and Technology,2007(4):28 − 29. (in Chinese with English abstract)] doi: 10.3969/j.issn.1005-5215.2007.04.010

    CHEN Xiuguan. Dm accumulation and growth model of Cunninghamia lanceolata plantation[J]. Protection Forest Science and Technology, 2007(4): 28 − 29. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-5215.2007.04.010

    [18]

    国家林业局. 造林项目碳汇计量监测指南: LY/T 2253—2014[S]. 北京:中国标准出版社,2014. [State Forestry Administration of the People’s Republic of China. Guidelines on carbon accounting and monitoring for afforestation project:LY/T 2253—2014[S]. Beijing:Standards Press of China, 2014. (in Chinese)]

    State Forestry Administration of the People’s Republic of China. Guidelines on carbon accounting and monitoring for afforestation project: LY/T 2253—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)

    [19]

    陈灵芝,陈清朗,鲍显诚,等. 北京山区的侧柏林(Platycladus orientalis)及其生物量研究[J]. 植物生态学与地植物学学报,1986,10(1):17 − 25. [CHEN Lingzhi,CHEN Qinglang,BAO Xiancheng,et al. Studies on Chinese arborvitae (Platycladus orientalis) forest and its biomass in beijing[J]. Acta Phytoecologica et Geobotanica Sinica,1986,10(1):17 − 25. (in Chinese with English abstract)]

    CHEN Lingzhi, CHEN Qinglang, BAO Xiancheng, et al. Studies on Chinese arborvitae (Platycladus orientalis) forest and its biomass in beijing[J]. Acta Phytoecologica et Geobotanica Sinica, 1986, 10(1): 17 − 25. (in Chinese with English abstract)

    [20]

    毕君,黄则舟,王振亮. 刺槐单株生物量动态研究[J]. 河北林学院学报,1993,8(4):278 − 282. [BI Jun,HUANG Zezhou,WANG Zhenliang. Studies on biomass dynamic of black loclust tree[J]. Journal of Hebei Forestry College,1993,8(4):278 − 282. (in Chinese with English abstract)]

    BI Jun, HUANG Zezhou, WANG Zhenliang. Studies on biomass dynamic of black loclust tree[J]. Journal of Hebei Forestry College, 1993, 8(4): 278 − 282. (in Chinese with English abstract)

    [21]

    高喜荣,赵辉,杨海青,等. 太行山低山丘陵区外来种火炬树群落生物量与碳贮量[J]. 中南林业科技大学学报,2012,32(12):172 − 175. [GAO Xirong,ZHAO Hui,YANG Haiqing,et al. Biomass and carbon storage of Rhus typhina in hilly area of Taihang Mountain[J]. Journal of Central South University of Forestry & Technology,2012,32(12):172 − 175. (in Chinese with English abstract)]

    GAO Xirong, ZHAO Hui, YANG Haiqing, et al. Biomass and carbon storage of Rhus typhina in hilly area of Taihang Mountain[J]. Journal of Central South University of Forestry & Technology, 2012, 32(12): 172 − 175. (in Chinese with English abstract)

    [22]

    JO H K,KIM J Y,PARK H M. Carbon reduction and planning strategies for urban parks in Seoul[J]. Urban Forestry & Urban Greening,2019,41:48 − 54.

    [23]

    刘国华,傅伯杰,方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报,2000,20(5):733 − 740. [LIU Guohua,FU Bojie,FANG Jingyun. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecologica Sinica,2000,20(5):733 − 740. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0933.2000.05.004

    LIU Guohua, FU Bojie, FANG Jingyun. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecologica Sinica, 2000, 20(5): 733 − 740. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0933.2000.05.004

    [24]

    王如松,方精云,高林,等. 现代生态学的热点问题研究[M]. 北京:中国科学技术出版社,1996. [WANG Rusong,FANG Jingyun,GAO Lin,et al. Research on hot issues of modern ecology[M]. Beijing:China Science and Technology Press,1996. (in Chinese)]

    WANG Rusong, FANG Jingyun, GAO Lin, et al. Research on hot issues of modern ecology[M]. Beijing: China Science and Technology Press, 1996. (in Chinese)

    [25]

    黎燕琼,郑绍伟,龚固堂,等. 不同年龄柏木混交林下主要灌木黄荆生物量及分配格局[J]. 生态学报,2010,30(11):2809 − 2818. [LI Yanqiong,ZHENG Shaowei,GONG Gutang,et al. Biomass and its allocation of undergrowth Vitex negundo L. in different age classes of mixed cypress forest[J]. Acta Ecologica Sinica,2010,30(11):2809 − 2818. (in Chinese with English abstract)]

    LI Yanqiong, ZHENG Shaowei, GONG Gutang, et al. Biomass and its allocation of undergrowth Vitex negundo L. in different age classes of mixed cypress forest[J]. Acta Ecologica Sinica, 2010, 30(11): 2809 − 2818. (in Chinese with English abstract)

    [26]

    吴光明. 森林资源抽样调查中样地数量与精度计算[J]. 现代农业科技,2016(9):173 − 174. [WU Guangming. Calculation method of quantity and precision of sampling survey in forest resource survey[J]. Modern Agricultural Science and Technology,2016(9):173 − 174. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-5739.2016.09.105

    WU Guangming. Calculation method of quantity and precision of sampling survey in forest resource survey[J]. Modern Agricultural Science and Technology, 2016(9): 173 − 174. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-5739.2016.09.105

    [27]

    卜晓燕. 银川平原不同类型湿地碳汇评估研究[D]. 银川:宁夏大学,2016. [BU Xiaoyan. Research of evaluation on carbon sequestration for different types of wetlands in Yinchuan Plain[D]. Yinchuan:Ningxia University,2016. (in Chinese with English abstract)]

    BU Xiaoyan. Research of evaluation on carbon sequestration for different types of wetlands in Yinchuan Plain[D]. Yinchuan: Ningxia University, 2016. (in Chinese with English abstract)

    [28]

    FANG J,CHEN A,PENG C,et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,292(5525):2320 − 2322. doi: 10.1126/science.1058629

    [29]

    NOWAK D J,GREENFIELD E J,HOEHN R E,et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution,2013,178:229 − 236. doi: 10.1016/j.envpol.2013.03.019

    [30]

    殷炜达,苏俊伊,许卓亚,等. 基于遥感技术的城市绿地碳储量估算应用[J]. 风景园林,2022,29(5):24 − 30. [YIN Weida,SU Junyi,XU Zhuoya,et al. Estimation and application of urban green space carbon storage based on remote sensing technology[J]. Landscape Architecture,2022,29(5):24 − 30. (in Chinese with English abstract)]

    YIN Weida, SU Junyi, XU Zhuoya, et al. Estimation and application of urban green space carbon storage based on remote sensing technology[J]. Landscape Architecture, 2022, 29(5): 24 − 30. (in Chinese with English abstract)

    [31]

    吕美蓉,任国兴,李雪莹,等. 可见-近红外光谱的潮间带沉积物有机碳含量的几种模型预测方法[J]. 光谱学与光谱分析,2020,40(4):1082 − 1086. [LV Meirong,REN Guoxing,LI Xueying,et al. Prediction of organic carbon content of intertidal sediments based on visible-near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(4):1082 − 1086. (in Chinese with English abstract)]

    LV Meirong, REN Guoxing, LI Xueying, et al. Prediction of organic carbon content of intertidal sediments based on visible-near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1082 − 1086. (in Chinese with English abstract)

    [32]

    韩云亭,李思悦,罗协. 基于GF-2影像的武汉市九峰山国家森林公园地上碳储量估算[J]. 地质通报,2024,43(4):611 − 619. [HAN Yunting,LI Siyue,LUO Xie. Estimation of above-ground carbon storage in the Jiufengshan National Forest Park of Wuhan based on GF-2 images[J]. Geological Bulletin of China,2024,43(4):611 − 619. (in Chinese with English abstract)] doi: 10.12097/gbc.2023.07.034

    HAN Yunting, LI Siyue, LUO Xie. Estimation of above-ground carbon storage in the Jiufengshan National Forest Park of Wuhan based on GF-2 images[J]. Geological Bulletin of China, 2024, 43(4): 611 − 619. (in Chinese with English abstract) doi: 10.12097/gbc.2023.07.034

    [33]

    张婷婷,石昊,芦晓峰,等. 辽河口湿地自然植被碳储量研究[J]. 人民黄河,2020,42(10):92 − 95. [ZHANG Tingting,SHI Hao,LU Xiaofeng,et al. Study on carbon reserves of natural vegetation in Liaohe river estuary wetland[J]. Yellow River,2020,42(10):92 − 95. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1379.2020.10.019

    ZHANG Tingting, SHI Hao, LU Xiaofeng, et al. Study on carbon reserves of natural vegetation in Liaohe river estuary wetland[J]. Yellow River, 2020, 42(10): 92 − 95. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2020.10.019

    [34]

    WANG Yan,WANG Qixiang,WANG Mengben. Similar carbon density of natural and planted forests in the Lüliang Mountains,China[J]. Annals of Forest Science,2018,75(3):87. doi: 10.1007/s13595-018-0753-3

    [35]

    苏军德. 矿山废弃地生态修复区植被碳库研究[J]. 水土保持通报,2018,38(5):234 − 237. [SU Junde. A study on vegetation carbon storage in ecological restoration area of abandoned mines[J]. Bulletin of Soil and Water Conservation,2018,38(5):234 − 237. (in Chinese with English abstract)]

    SU Junde. A study on vegetation carbon storage in ecological restoration area of abandoned mines[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 234 − 237. (in Chinese with English abstract)

    [36]

    LIAO Zhanmang,YUE Chao,HE Binbin,et al. Growing biomass carbon stock in China driven by expansion and conservation of woody areas[J]. Nature Geoscience,2024,17(11):1127 − 1134. doi: 10.1038/s41561-024-01569-0

    [37]

    胡茸茸,郭杨,欧阳勋志,等. 赣中杉木林碳密度空间分布格局及其影响因素[J]. 生态学杂志,2025,44(2):365 − 372. [HU Rongrong,GUO Yang,OUYANG Xunzhi,et al. Spatial distribution pattern of carbon density and its influencing factors of Cunninghamia lanceolata plantations in central Jiangxi[J]. Chinese Journal of Ecology,2025,44(2):365 − 372. (in Chinese with English abstract)]

    HU Rongrong, GUO Yang, OUYANG Xunzhi, et al. Spatial distribution pattern of carbon density and its influencing factors of Cunninghamia lanceolata plantations in central Jiangxi[J]. Chinese Journal of Ecology, 2025, 44(2): 365 − 372. (in Chinese with English abstract)

    [38]

    郝旺林. 黄土丘陵区土壤CO2排放对水蚀的响应及模拟研究[D]. 杨陵:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2022. [[HAO Wanglin. Response and modeling of soil CO2,emission to water erosion in loess hilly areas[D]. Yangling:University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment,Chinese Academy of Sciences and Ministry of Education),2022. (in Chinese with English abstract)]]

    [HAO Wanglin. Response and modeling of soil CO2, emission to water erosion in loess hilly areas[D]. Yangling: University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education), 2022. (in Chinese with English abstract)]

    [39]

    梁森,张建军,王柯,等. 区域生态保护修复碳汇潜力评估方法与应用——基于第一批山水林田湖草生态保护修复工程的研究[J]. 生态学报,2023,43(9):3517 − 3531. [LIANG Sen,ZHANG Jianjun,WANG Ke,et al. Methodology and application of carbon sink potential assessment for regional ecological conservation and restoration:Based on the research of the first batch of pilots for ecological protection and restoration project of mountains-rivers-forests-farmlands[J]. Acta Ecologica Sinica,2023,43(9):3517 − 3531. (in Chinese with English abstract)]

    LIANG Sen, ZHANG Jianjun, WANG Ke, et al. Methodology and application of carbon sink potential assessment for regional ecological conservation and restoration: Based on the research of the first batch of pilots for ecological protection and restoration project of mountains-rivers-forests-farmlands[J]. Acta Ecologica Sinica, 2023, 43(9): 3517 − 3531. (in Chinese with English abstract)

    [40]

    肖烨,黄志刚,令玉林,等. 赤水河流域不同植被恢复类型土壤有机碳储量特征及其影响因素[J]. 土壤通报,2024,55(6):1636 − 1646. [XIAO Ye,HUANG Zhigang,LING Yulin,et al. Characteristics and influencing factors of Soil organic carbon storage in different vegetation restoration types in the Chishui River Basin[J]. Chinese Journal of Soil Science,2024,55(6):1636 − 1646. (in Chinese with English abstract)]

    XIAO Ye, HUANG Zhigang, LING Yulin, et al. Characteristics and influencing factors of Soil organic carbon storage in different vegetation restoration types in the Chishui River Basin[J]. Chinese Journal of Soil Science, 2024, 55(6): 1636 − 1646. (in Chinese with English abstract)

    [41]

    叶小曼,魏天兴,于欢,等. 黄土丘陵区典型森林生态系统碳储量及其影响因素[J]. 生态学杂志,2025,44(5):1409 − 1416. [YE Xiaoman,WEI Tianxing,YU Huan,et al. Carbon storage and its influencing factors of typical forest ecosystems in the loess hilly region[J]. Journal of Ecology,2025,44(5):1409 − 1416.(in Chinese with English abstract)]

    YE Xiaoman, WEI Tianxing, YU Huan, et al. Carbon storage and its influencing factors of typical forest ecosystems in the loess hilly region[J]. Journal of Ecology, 2025, 44(5): 1409 − 1416.(in Chinese with English abstract)

    [42]

    邓念东,张硕伦,梁毅轩,等. 黄土边坡植被恢复技术研究进展[J]. 科学技术与工程,2025,25(2):448 − 458. [DENG Niandong,ZHANG Shuolun,LIANG Yixuan,et al. Research progress in vegetation restoration technology for loess slopes[J]. Science Technology and Engineering,2025,25(2):448 − 458. (in Chinese with English abstract)] doi: 10.12404/j.issn.1671-1815.2309443

    DENG Niandong, ZHANG Shuolun, LIANG Yixuan, et al. Research progress in vegetation restoration technology for loess slopes[J]. Science Technology and Engineering, 2025, 25(2): 448 − 458. (in Chinese with English abstract) doi: 10.12404/j.issn.1671-1815.2309443

  • 加载中

(7)

(11)

计量
  • 文章访问数:  19
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2025-01-25
修回日期:  2025-03-01
刊出日期:  2025-07-15

目录