逆断层错动下基岩上覆土-隧道多尺度响应特征

禹海涛, 李婷婷, 闫晓. 逆断层错动下基岩上覆土-隧道多尺度响应特征[J]. 水文地质工程地质, 2025, 52(4): 202-213. doi: 10.16030/j.cnki.issn.1000-3665.202502016
引用本文: 禹海涛, 李婷婷, 闫晓. 逆断层错动下基岩上覆土-隧道多尺度响应特征[J]. 水文地质工程地质, 2025, 52(4): 202-213. doi: 10.16030/j.cnki.issn.1000-3665.202502016
YU Haitao, LI Tingting, YAN Xiao. Multi-scale response characteristics of overlying soil-tunnel system under reverse fault dislocation[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 202-213. doi: 10.16030/j.cnki.issn.1000-3665.202502016
Citation: YU Haitao, LI Tingting, YAN Xiao. Multi-scale response characteristics of overlying soil-tunnel system under reverse fault dislocation[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 202-213. doi: 10.16030/j.cnki.issn.1000-3665.202502016

逆断层错动下基岩上覆土-隧道多尺度响应特征

  • 基金项目: 国家自然科学基金项目(42177134; 42477141);中央高校基本科研业务费专项资金项目
详细信息
    作者简介: 禹海涛(1983—),男,博士,教授,从事地下结构防灾减灾方面的研究工作。E-mail:yuhaitao@tongji.edu.cn
    通讯作者: 闫晓(1994—),女,博士,助理教授,从事岩土力学方面的研究工作。E-mail:xiao_yan@tongji.edu.cn
  • 中图分类号: TU43;U452.1+1

Multi-scale response characteristics of overlying soil-tunnel system under reverse fault dislocation

More Information
  • 基岩断层错动在上覆土层中的传播破裂过程受多种因素控制,上覆土中跨断层隧道结构在断层错动下的响应机制尚不清晰。为解决这一问题,建立了基岩断层上覆土与隧道结构的三维离散-连续耦合模型,采用离散元模拟上覆土层细观颗粒特性与变形模式,采用有限差分法计算隧道结构宏观力学响应,并通过界面耦合实现宏-细观交互传递。基于该方法,分析了基岩断层错动在上覆土层中的破裂传播过程和上覆土中隧道结构的变形受力响应,并探究了断层倾角与隧道埋深对隧道响应及失效模式的影响机制。结果表明:基岩断层错动在上覆土层中以剪切带的形式传播,隧道结构的存在将增大地层位错变形范围;隧道结构的受力变形模式为由隧道纵向受弯导致的受弯区上下盘衬砌应力反对称分布,隧道结构失效最先发生在上盘区段,体现出显著的上盘效应;在相同基岩错动量条件下,断层倾角越小,隧道结构受力越不利;隧道埋深越深,其周围土体变形范围越集中,隧道结构受力越不利。研究可为基岩断层错动作用下上覆土中隧道结构抗震设计提供科学依据。

  • 加载中
  • 图 1  上覆土中跨断层隧道模型示意图

    Figure 1. 

    图 2  PFC-FLAC3D界面耦合原理

    Figure 2. 

    图 3  抗转动线性接触模型(据文献[11]重新绘制)

    Figure 3. 

    图 4  三维直剪试验模拟结果

    Figure 4. 

    图 5  局部小颗粒加密验证

    Figure 5. 

    图 6  归一化基岩位错h/H=10%时颗粒位移和颗粒旋转

    Figure 6. 

    图 7  隧道拱顶纵向位移曲线

    Figure 7. 

    图 8  隧道沿纵向各断面直径变化率曲线

    Figure 8. 

    图 9  h/H=10%时−50断面(上盘)土体变形图与力链图

    Figure 9. 

    图 10  隧道主应力云图

    Figure 10. 

    图 11  隧道主应力分析

    Figure 11. 

    图 12  隧道结构失效演化过程

    Figure 12. 

    图 13  不同断层倾角下隧道纵向拱顶位移

    Figure 13. 

    图 14  h/H=6%时隧道沿纵向断面主应力曲线

    Figure 14. 

    图 15  不同倾角下隧道失效体积演化

    Figure 15. 

    图 16  不同埋深隧道拱顶纵向位移曲线

    Figure 16. 

    图 17  不同土层深度处土层位移曲线

    Figure 17. 

    图 18  不同埋深隧道h/H=6%时隧道沿纵向断面主应力曲线

    Figure 18. 

    图 19  不同埋深隧道的失效演化图

    Figure 19. 

    表 1  隧道衬砌模型等效参数取值

    Table 1.  Equivalent parameter of tunnel lining model

    参数 弹性模量/GPa 泊松比 黏聚力/MPa 内摩擦角/(°) 剪胀角/(°)
    隧道衬砌 32 0.2 7.2 45 30
    下载: 导出CSV

    表 2  三维试样细观参数标定结果

    Table 2.  Calibration results of 3D sample microparameters

    变量 过程 参数 取值
    孔隙率 n 0.3
    有效模量/GPa E 55
    法切向刚度比 $ k_{\mathrm{n}}/k_{\mathrm{s}} $ 1.0
    ball-ball摩擦系数 成样阶段 $ fric $ 0.02
    剪切阶段 $ fric $ 0.2
    ball-facet摩擦系数 剪切阶段 $ fric $ 0.0
    抗转动组摩擦系数 剪切阶段 $ rrfric $ 0.15
    下载: 导出CSV

    表 3  计算工况表

    Table 3.  Simulation cases

    工况 断层倾角/(°) 隧道埋深/m 分析因素
    R60T30 60 30 断层倾角
    R45T30 45 30
    R30T30 30 30
    R60T30 60 30 隧道埋深
    R60T20 60 20
    R60T10 60 10
    下载: 导出CSV
  • [1]

    王志民,罗刚,王媛,等. 切割斜坡断层的几何形态对斜坡地震响应影响研究[J]. 水文地质工程地质,2023,50(6):147 − 157. [WANG Zhimin,LUO Gang,WANG Yuan,et al. A study of the influence of the crossing-slope fault geometry on the slope seismic response[J]. Hydrogeology & Engineering Geology,2023,50(6):147 − 157. (in Chinese with English abstract)]

    WANG Zhimin, LUO Gang, WANG Yuan, et al. A study of the influence of the crossing-slope fault geometry on the slope seismic response[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 147 − 157. (in Chinese with English abstract)

    [2]

    李远远,李春鹏,和大钊,等. 基于流固耦合作用的富水断层区隧道初期支护优化分析[J]. 水文地质工程地质,2025,52(3):144 − 152. [LI Yuanyuan,LI Chunpeng,HE Dazhao,et al. Optimization analysis of initial support for tunnels in water-rich fault zone based on fluid-solid interaction[J]. Hydrogeology & Engineering Geology,2025,52(3):144 − 152. (in Chinese with English abstract)]

    LI Yuanyuan, LI Chunpeng, HE Dazhao, et al. Optimization analysis of initial support for tunnels in water-rich fault zone based on fluid-solid interaction[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 144 − 152. (in Chinese with English abstract)

    [3]

    BRAY J D,SEED R B,CLUFF L S,et al. Earthquake fault rupture propagation through soil[J]. Journal of Geotechnical Engineering,1994,120(3):543 − 561. doi: 10.1061/(ASCE)0733-9410(1994)120:3(543)

    [4]

    张永双,任三绍,郭长宝,等. 活动断裂带工程地质研究[J]. 地质学报,2019,93(4):763 − 775. [ZHANG Yongshuang,REN Sanshao,GUO Changbao,et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica,2019,93(4):763 − 775. (in Chinese with English abstract)]

    ZHANG Yongshuang, REN Sanshao, GUO Changbao, et al. Research on engineering geology related with active fault zone[J]. Acta Geologica Sinica, 2019, 93(4): 763 − 775. (in Chinese with English abstract)

    [5]

    BURRIDGE P B,SCOTT R F,HALL J F. Centrifuge study of faulting effects on tunnel[J]. Journal of Geotechnical Engineering,1989,115(7):949 − 967 doi: 10.1061/(ASCE)0733-9410(1989)115:7(949)

    [6]

    LIU Xuezeng,LI Xuefeng,SANG Yunlong,et al. Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels[J]. Tunnelling and Underground Space Technology,2015,49:417 − 425. doi: 10.1016/j.tust.2015.05.010

    [7]

    CAI Q P,PENG J M,NG C W W,et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand[J]. Computers and Geotechnics,2019,111:137 − 146. doi: 10.1016/j.compgeo.2019.03.010

    [8]

    史秋艾. 珠江三角洲西北部晚第四纪沉积演化研究[J]. 中国煤炭地质,2024,36(7):25 − 28. [SHI Qiuai. Study on late Quaternary sedimentary evolution in northwest the Pearl River Delta[J]. Coal Geology of China,2024,36(7):25 − 28. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-1803.2024.07.04

    SHI Qiuai. Study on late Quaternary sedimentary evolution in northwest the Pearl River Delta[J]. Coal Geology of China, 2024, 36(7): 25 − 28. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2024.07.04

    [9]

    鲁战乾. 新乡市第四纪沉积物粒度分析及其沉积相特征[D]. 北京:中国地质大学(北京),2013. [LU Zhanqian. Grain size analysis and sedimentary facies characteristics of Quaternary sediments in Xinxiang city[D]. Beijing:China University of Geosciences (Beijing),2013. (in Chinese with English abstract)]

    LU Zhanqian. Grain size analysis and sedimentary facies characteristics of Quaternary sediments in Xinxiang city[D]. Beijing: China University of Geosciences (Beijing), 2013. (in Chinese with English abstract)

    [10]

    尹小涛,郑亚娜,马双科. 基于颗粒流数值试验的岩土材料内尺度比研究[J]. 岩土力学,2011,32(4):1211 − 1215. [YIN Xiaotao,ZHENG Yana,MA Shuangke. Study of inner scale ratio of rock and soil material based on numerical tests of particle flow code[J]. Rock and Soil Mechanics,2011,32(4):1211 − 1215. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-7598.2011.04.043

    YIN Xiaotao, ZHENG Yana, MA Shuangke. Study of inner scale ratio of rock and soil material based on numerical tests of particle flow code[J]. Rock and Soil Mechanics, 2011, 32(4): 1211 − 1215. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.04.043

    [11]

    刘凯,孔超,唐浚哲,等. 高地应力断层破碎带衬砌力学特性对比与分析[J]. 铁道标准设计,2014,58(12):99 − 103. [LIU Kai,KONG Chao,TANG Junzhe,et al. Comparison and analysis of mechanical properties of lining in fault fracture zone with high geostress[J]. Railway Standard Design,2014,58(12):99 − 103. (in Chinese with English abstract)]

    LIU Kai, KONG Chao, TANG Junzhe, et al. Comparison and analysis of mechanical properties of lining in fault fracture zone with high geostress[J]. Railway Standard Design, 2014, 58(12): 99 − 103. (in Chinese with English abstract)

    [12]

    王一伟,刘润,孙若晗,等. 基于抗转模型的颗粒材料宏-细观关系研究[J]. 岩土力学,2022,43(4):945 − 956. [WANG Yiwei,LIU Run,SUN Ruohan,et al. Macroscopic and mesoscopic correlation of granular materials based on rolling resistance linear contact model[J]. Rock and Soil Mechanics,2022,43(4):945 − 956. (in Chinese with English abstract)]

    WANG Yiwei, LIU Run, SUN Ruohan, et al. Macroscopic and mesoscopic correlation of granular materials based on rolling resistance linear contact model[J]. Rock and Soil Mechanics, 2022, 43(4): 945 − 956. (in Chinese with English abstract)

    [13]

    ANASTASOPOULOS I,GAZETAS G,BRANSBY M F,et al. Fault rupture propagation through sand:Finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(8):943 − 958. doi: 10.1061/(ASCE)1090-0241(2007)133:8(943)

    [14]

    张炳焜. 断层错动数值模拟中的几个关键影响因素[J]. 四川建筑,2014,34(2):124 − 125. [ZHANG Bingkun. Several key influencing factors in numerical simulation of fault dislocation[J]. Sichuan Architecture,2014,34(2):124 − 125. (in Chinese)] doi: 10.3969/j.issn.1007-8983.2014.02.053

    ZHANG Bingkun. Several key influencing factors in numerical simulation of fault dislocation[J]. Sichuan Architecture, 2014, 34(2): 124 − 125. (in Chinese) doi: 10.3969/j.issn.1007-8983.2014.02.053

    [15]

    LIN Minglang,CHUNG C F,JENG F S. Deformation of overburden soil induced by thrust fault slip[J]. Engineering Geology,2006,88(1/2):70 − 89.

    [16]

    张培震,徐锡伟,闻学泽,等. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报,2008,51(4):1066 − 1073. [ZHANG Peizhen,XU Xiwei,WEN Xueze,et al. Slip rates and recurrence intervals of the Longmen Shan active fault zone,and tectonic implications for the mechanism of the May 12 Wenchuan earthquake,2008,Sichuan,China[J]. Chinese Journal of Geophysics,2008,51(4):1066 − 1073. (in Chinese with English abstract)] doi: 10.3321/j.issn:0001-5733.2008.04.015

    ZHANG Peizhen, XU Xiwei, WEN Xueze, et al. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 2008, 51(4): 1066 − 1073. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5733.2008.04.015

    [17]

    李天斌. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报,2008,16(6):742 − 750. [LI Tianbin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(6):742 − 750. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2008.06.003

    LI Tianbin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742 − 750. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.06.003

    [18]

    MA Y,SHENG Qian,ZHANG Guimin,et al. A 3D discrete-continuum coupling approach for investigating the deformation and failure mechanism of tunnels across an active fault:A case study of Xianglushan tunnel[J]. Applied Sciences,2019,9(11):2318. doi: 10.3390/app9112318

    [19]

    禹海涛,许桦霖,卫一博. 穿活动断裂带隧道抗错动易损性分析方法[J]. 岩土工程学报,2024,46(10):2060 − 2068. [YU Haitao,XU Hualin,WEI Yibo. Seismic fragility analysis method for evaluation of dislocation resistance of tunnels crossing active fault zones[J]. Chinese Journal of Geotechnical Engineering,2024,46(10):2060 − 2068. (in Chinese with English abstract)]

    YU Haitao, XU Hualin, WEI Yibo. Seismic fragility analysis method for evaluation of dislocation resistance of tunnels crossing active fault zones[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2060 − 2068. (in Chinese with English abstract)

  • 加载中

(19)

(3)

计量
  • 文章访问数:  28
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2025-02-13
修回日期:  2025-04-23
刊出日期:  2025-07-15

目录