Identification of karst water inflow sources in the main shaft of Lianhuashan, Jingxiang phosphate mine, Hubei Province
-
摘要:
岩溶矿区受岩溶发育的影响,非均质性强烈,在延深开采过程中极易出现突涌水现象以及地下水环境污染等问题。莲花山主井施工过程中受涌突水问题的困扰,施工进展缓慢。在系统整理已有水文地质资料的基础上,通过对主井及周边水文孔抽水试验前后水化学数据、同位素数据分析并结合高精度野外示踪试验,查明了主井的充水水源及主要径流途径。结果表明莲花山矿段内ZK02钻孔地下水持续受南部磷石膏渣场渗滤液的泄漏补给,水化学类型为SO4—Mg•Ca;氢氧同位素显示大气降水为区域地下水的主要充水水源之一,主井抽水后水化学类型由HCO3•SO4—Mg•Ca转变为SO4•HCO3—Mg•Ca,反映抽水形成的降落漏斗促使ZK01的灯影组岩溶水和ZK02的渗滤液污染水共同补给主井;示踪试验揭示地下水流向为渣场→ZK02→ZK03→主井,矿段内地下水从南部向北东部径流,在F13断层影响下,渗滤液沿着张家冲向斜核部至F09断层,并沿着其倾向从主井涌出。研究结果可为主井防治岩溶水害、地下水污染和水资源开发利用管理提供参考依据。
Abstract:Karst mining areas are characterized by pronounced heterogeneity due to extensive karst development, making them particularly susceptible to water inrush and groundwater contamination during deep extension mining. During the construction of the main shaft in Lianhuashan, the construction progress was slow because of being troubled by water inrush problems. This study identified the water-filling sources and main runoff paths of the main shaft by analyzing the hydrochemical data and isotope data before and after the pumping tests of the main shaft and surrounding hydro-holes and combining with high-precision field tracer experiments. The results show that the groundwater in drilling hole ZK02 within the Lianhuashan mining section is continuously replenished by the leakage of leachate from the southern phosphogypsum slag yard, with hydrochemical type of SO4—Mg•Ca. The hydrogen and oxygen isotopes show that atmospheric precipitation is one of the main water-filling sources of regional groundwater. After the main shaft pumping, the hydrochemical type changes from HCO3•SO4—Mg•Ca to SO4•HCO3—Mg•Ca, indicating that the drawdown funnel formed by pumping promotes the joint replenishment of the karst water of ZK01 and the leachate-polluted water of ZK02 to the main shaft. The tracer test reveals that the groundwater flow direction is from the slag yard→ZK02→ZK03→the main shaft. Regional flow is predominantly from the south, and under the structural influence of the F13 fault, leachate migrates along the Zhangjiachong syncline axis toward the F09 fault, eventually discharging through the main shaft along its dip direction. This study can provide a scientific basis for the prevention and control of karst water hazards, groundwater pollution, and the management of water resource development and utilization in the main shaft.
-
-
表 1 研究区样品水化学数据及同位素组成
Table 1. Hydrochemical data and isotopic composition of samples from the study area
样品 点位 类型 pH TDS/
(mg·L−1)K+/
(mg·L−1)Ca2+/
(mg·L−1)Na+/
(mg·L−1)Mg2+/
(mg·L−1)${\mathrm{CO}}_3^{2-} $ /
(mg·L−1)Cl−/
(mg·L−1)${\mathrm{SO}}_4^{2-} $ /
(mg·L−1)δD
/‰δ18O
/‰δ34S
/‰d
/‰灯影组—
陡山沱组
混合水样ZK01 抽水前 7.24 371.11 1.12 99.59 5.07 78.02 0.42 4.74 64.63 −50.4 −7.92 3.74 12.96 抽水中 7.15 420.43 0.85 96.86 4.72 89.93 0.35 5.17 105.045 / / / / 抽水后 7.20 419.20 0.69 94.45 5.09 75.77 0.41 4.68 106.27 −50.5 −7.93 3.08 13.04 ZK03 抽水前 7.15 954.60 1.50 171.07 21.23 163.47 0.42 23.89 513.96 −48.0 −7.44 1.11 11.52 抽水中 7.16 953.27 2.35 163.71 20.02 165.92 0.43 20.73 514.51 — — — — 抽水后 7.19 853.27 3.48 144.21 17.05 152.90 0.42 16.18 447.35 −48.9 −7.54 1.15 11.42 渗滤液
水样渣场 2.23 10919.19 410.39 518.42 232.60 4586.08 — 169.20 5930.00 — — 1.67 — 尾矿库 6.05 11667.92 101.38 500.95 1268.74 318.06 0.03 64.05 9890.00 — — −0.96 —
灯影组
水样ZK01 抽水前 7.12 407.68 1.30 107.00 4.39 66.40 — 7.97 93.80 −50.6 −7.92 4.33 12.76 抽水中 7.02 372.20 1.12 80.89 3.92 49.40 0.29 6.33 88.70 — — — — 抽水后 7.00 375.78 0.70 87.91 4.38 52.70 0.27 5.36 96.0 0 −50.5 −7.95 3.89 13.10 ZK02
(小流量)抽水前 6.48 2814.02 12.90 236.10 67.70 293.01 0.16 35.20 2090.01 −43.3 −6.17 1.84 6.06 抽水中 6.55 2659.25 12.90 226.11 63.11 247.12 0.18 32.70 2010.02 −43.3 −6.19 / 6.22 抽水后 6.63 2563.52 12.70 209.03 60.52 275.05 0.21 65.90 1860.10 −43.9 −6.32 1.76 6.66 ZK02
(大流量)抽水前 6.52 2735.59 12.20 213.07 61.80 254.02 0.17 32.80 2080.03 −43.6 −6.23 1.80 6.24 抽水中 6.54 2382.13 16.40 186.12 55.60 152.03 0.17 29.20 1840.12 −43.7 −6.29 — 6.62 抽水后 6.74 2158.61 12.30 199.05 56.40 227.00 0.26 28.10 1550.05 −44.5 −6.44 1.71 7.02 ZK03 抽水前 6.73 946.34 2.44 153.08 15.60 120.01 0.19 15.00 551.00 −47.9 −7.37 2.03 11.06 抽水中 6.78 917.44 2.85 152.11 15.70 111.00 0.20 14.40 541.01 — — — — 抽水后 6.77 919.01 3.47 141.21 15.90 96.50 0.19 15.20 556.03 −48.7 −7.49 1.76 11.22 主井 抽水前 7.90 444.72 9.12 91.99 8.78 75.77 1.65 14.27 170.88 −50.8 −7.90 3.08 12.40 抽水后 7.38 684.81 7.70 122.65 12.42 113.52 0.58 14.38 342.41 −49.3 −7.62 1.30 11.66 注:“—”为低于检测值,未检测出具体数据或未检测;“d”为“d-excess值”,代指氘盈余;ZK02钻孔进行2次抽水试验(小流量、大流量)。 表 2 基于示踪试验求得的部分径流通道参数
Table 2. Calculated flow channel parameters based on tracer tests
参数 N-ZK01 N-ZK02 N-ZK03 投放时间 2024年4月28日 2024年4月28日 2024年4月28日 示踪剂 罗丹明 荧光增白剂 食盐 投放量/kg 1 1 300 平面距离/m 129.87 64.52 46.97 平均流量/(m3·h−1) 90 90 90 初次检测时间/min 1490 325 104 放水条件下平均流速
/(m·d−1)135.94 170.45 279.49 天然条件下平均流速
/(m·d−1)22.54 31.09 91.23 峰值浓度/(μg·L−1) 98.95 20 832 回收率/% 0.19 0.3 0.43 弥散系数/(m2·s−1) 0.85 0.15 0.42 径流通道储水量/m3 128.97 31.92 16.83 径流通道横截面积/m2 0.66 0.33 0.24 管道平均直径/m 0.92 0.64 0.55 雷诺数 1447 1263 1779 佩克莱数 0.24 0.85 0.36 -
[1] XIA Riyuan. Groundwater resources in karst area in Southern China and sustainable utilization pattern[J]. Journal of Groundwater Science and Engineering,2016,4(4):301 − 309. doi: 10.26599/JGSE.2016.9280034
[2] 李严,王家乐,靳孟贵,等. 运用水文时间序列分析识别济南泉域岩溶发育特征[J]. 地球科学,2021,46(7):2583 − 2593. [LI Yan,WANG Jiale,JIN Menggui,et al. Hydrodynamic characteristics of Jinan karst spring system identified by hydrologic time-series data[J]. Earth Science,2021,46(7):2583 − 2593. (in Chinese with English abstract)]
LI Yan, WANG Jiale, JIN Menggui, et al. Hydrodynamic characteristics of Jinan karst spring system identified by hydrologic time-series data[J]. Earth Science, 2021, 46(7): 2583 − 2593. (in Chinese with English abstract)
[3] 王万金,郑明英. 典型开放型岩溶地下水系统多重性特征研究[J]. 地下水,2023,45(4):39 − 42. [WANG Wanjin,ZHENG Mingying. A study on the multiplicity characteristics of typical open karst groundwater systems[J]. Ground Water,2023,45(4):39 − 42. (in Chinese with English abstract)]
WANG Wanjin, ZHENG Mingying. A study on the multiplicity characteristics of typical open karst groundwater systems[J]. Ground Water, 2023, 45(4): 39 − 42. (in Chinese with English abstract)
[4] 陈彦美,陈植华,於开炳. 南方岩溶金属矿区地下水非均质性及防治水意义:以福建马坑铁矿为例[J]. 地球科学,2016,41(4):692 − 700. [CHEN Yanmei,CHEN Zhihua,YU Kaibing. Heterogeneity and water prevention of karst water system in metal mine areas in southern China:A case study of Makeng Iron Mine,Fujian Province[J]. Earth Science,2016,41(4):692 − 700. (in Chinese with English abstract)]
CHEN Yanmei, CHEN Zhihua, YU Kaibing. Heterogeneity and water prevention of karst water system in metal mine areas in southern China: A case study of Makeng Iron Mine, Fujian Province[J]. Earth Science, 2016, 41(4): 692 − 700. (in Chinese with English abstract)
[5] 丁建丽. 矿井水文地质特征及突水机理浅析[J]. 中国井矿盐,2023,54(3):17 − 19. [DING Jianli. An analysis of mine hydrogeologic characteristics and water-surge mechanism[J]. China Well Mine Salt,2023,54(3):17 − 19. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-0335.2023.03.007
DING Jianli. An analysis of mine hydrogeologic characteristics and water-surge mechanism[J]. China Well Mine Salt, 2023, 54(3): 17 − 19. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-0335.2023.03.007
[6] 刘再华,袁道先. 中国典型表层岩溶系统的地球化学动态特征及其环境意义[J]. 地质论评,2000,46(3):324 − 327. [LIU Zaihua,YUAN Daoxian. Features of geochemical variations in typical epikarst systems of China and their environmental significance[J]. Geological Review,2000,46(3):324 − 327. (in Chinese with English abstract)] doi: 10.3321/j.issn:0371-5736.2000.03.014
LIU Zaihua, YUAN Daoxian. Features of geochemical variations in typical epikarst systems of China and their environmental significance[J]. Geological Review, 2000, 46(3): 324 − 327. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2000.03.014
[7] 乔宇,康小兵,眭素刚,等. 岩溶富水矿山构造破碎带破坏数值模拟及突涌水成因分析[J]. 中国岩溶,2025. [QIAO Yu,KANG Xiaobing,HUI Sugang,et al. Research on the mechanism of water surge in tectonic fracture zones of karst water-rich mines [J]. Carsologica Sinica,2025. (in Chinese with English abstract)]
QIAO Yu, KANG Xiaobing, HUI Sugang, et al. Research on the mechanism of water surge in tectonic fracture zones of karst water-rich mines [J]. Carsologica Sinica, 2025. (in Chinese with English abstract)
[8] 沈建军,倪月琴. 内蒙古上海庙矿区长城六号矿井水文地质条件及充水因素分析[J]. 山西能源学院学报,2023,36(6):13 − 15. [SHEN Jianjun,NI Yueqin. Analysis of hydrogeological conditions and water filling factors of Changcheng No. 6 mine in Shanghai Miao Mining Area,Inner Mongolia[J]. Journal of Shanxi Institute of Energy,2023,36(6):13 − 15. (in Chinese)]
SHEN Jianjun, NI Yueqin. Analysis of hydrogeological conditions and water filling factors of Changcheng No. 6 mine in Shanghai Miao Mining Area, Inner Mongolia[J]. Journal of Shanxi Institute of Energy, 2023, 36(6): 13 − 15. (in Chinese)
[9] 满孝全,魏久传,谢道雷,等. 基于水化学特征分析的突水水源判别方法[J]. 中国科技论文,2021,16(1):76 − 81. [MAN Xiaoquan,WEI Jiuchuan,XIE Daolei,et al. Identification method of water inrush source based on analysis of hydrochemical characteristics[J]. China Sciencepaper,2021,16(1):76 − 81. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-2783.2021.01.012
MAN Xiaoquan, WEI Jiuchuan, XIE Daolei, et al. Identification method of water inrush source based on analysis of hydrochemical characteristics[J]. China Sciencepaper, 2021, 16(1): 76 − 81. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-2783.2021.01.012
[10] 丁正芬. 浅析老虎洞磷矿矿床充水因素[J]. 当代化工研究,2018(3):40 − 41. [DING Zhengfen. Analysis on the water filling factors of the tiger cave phosphate ore deposit[J]. Modern Chemical Research,2018(3):40 − 41. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-8114.2018.03.026
DING Zhengfen. Analysis on the water filling factors of the tiger cave phosphate ore deposit[J]. Modern Chemical Research, 2018(3): 40 − 41. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8114.2018.03.026
[11] 于杨,金晓文,徐思,等. 延深开采影响下典型岩溶充水矿区水化学特征及涌水来源研究[J]. 中国岩溶,2024,43(5):1020 − 1033. [YU Yang,JIN Xiaowen,XU Si,et al. Study on the water chemical characteristics and water inflow sources of typical karst water-filled mining areas under the influence of extended mining[J]. Carsologica Sinica,2024,43(5):1020 − 1033. (in Chinese with English abstract)] doi: 10.11932/karst20240503
YU Yang, JIN Xiaowen, XU Si, et al. Study on the water chemical characteristics and water inflow sources of typical karst water-filled mining areas under the influence of extended mining[J]. Carsologica Sinica, 2024, 43(5): 1020 − 1033. (in Chinese with English abstract) doi: 10.11932/karst20240503
[12] YANG Yonggang,GUO Tingting,JIAO Wentao. Destruction processes of mining on water environment in the mining area combining isotopic and hydrochemical tracer[J]. Environmental Pollution,2018,237:356 − 365. doi: 10.1016/j.envpol.2018.02.002
[13] 王甜甜,方刚,张溪彧,等. 基于水化学和氢氧同位素特征的敏东一矿水源定性定量研究[J]. 煤矿安全,2024,55(10):190 − 197. [WANG Tiantian,FANG Gang,ZHANG Xiyu,et al. Qualitative and quantitative study of water source in Mindong No. 1 Mine based on water chemistry and hydrogen and oxygen isotopes characteristics[J]. Safety in Coal Mines,2024,55(10):190 − 197. (in Chinese with English abstract)]
WANG Tiantian, FANG Gang, ZHANG Xiyu, et al. Qualitative and quantitative study of water source in Mindong No. 1 Mine based on water chemistry and hydrogen and oxygen isotopes characteristics[J]. Safety in Coal Mines, 2024, 55(10): 190 − 197. (in Chinese with English abstract)
[14] QU Shen,WANG Guangcai,SHI Zheming,et al. Using stable isotopes (δD,δ18O,δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district,northern China[J]. Hydrogeology Journal,2018,26(5):1443 − 1453. doi: 10.1007/s10040-018-1803-5
[15] 吕全标,胡晓农,曹建华,等. 基于钻孔抽水试验和示踪试验的岩溶地区含水层结构研究[J]. 中国岩溶,2017,36(5):727 − 735. [LYU Quanbiao,HU Xiaonong,CAO Jianhua,et al. Aquifer structure of karst areas derived from borehole pumping and tracer tests[J]. Carsologica Sinica,2017,36(5):727 − 735. (in Chinese with English abstract)]
LYU Quanbiao, HU Xiaonong, CAO Jianhua, et al. Aquifer structure of karst areas derived from borehole pumping and tracer tests[J]. Carsologica Sinica, 2017, 36(5): 727 − 735. (in Chinese with English abstract)
[16] CEN Xinyu,XU Mo,QI Jihong,et al. Characterization of karst conduits by tracer tests for an artificial recharge scheme[J]. Hydrogeology Journal,2021,29(7):2381 − 2396. doi: 10.1007/s10040-021-02398-w
[17] 赵一,李衍青,覃星铭,等. 南洞地下河岩溶管道展布及结构特征的示踪试验解析[J]. 中国岩溶,2017,36(2):226 − 233. [ZHAO Yi,LI Yanqing,QIN Xingming,et al. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. Carsologica Sinica,2017,36(2):226 − 233. (in Chinese with English abstract)] doi: 10.11932/karst20170210
ZHAO Yi, LI Yanqing, QIN Xingming, et al. Tracer tests on distribution and structural characteristics of karst channels in Nandong underground river drainage[J]. Carsologica Sinica, 2017, 36(2): 226 − 233. (in Chinese with English abstract) doi: 10.11932/karst20170210
[18] 范祖金,魏兴,周育琳,等. 三峡库区城市浅层地下水水化学和氢氧稳定同位素特征及其指示意义[J]. 环境科学学报,2023,43(6):258 − 269. [FAN Zujin,WEI Xing,ZHOU Yulin,et al. Hydrochemical and hydrogen-oxygen stable isotope characteristics of urban shallow groundwater in Three Gorges Reservoir Area and indicative significance[J]. Acta Scientiae Circumstantiae,2023,43(6):258 − 269. (in Chinese with English abstract)]
FAN Zujin, WEI Xing, ZHOU Yulin, et al. Hydrochemical and hydrogen-oxygen stable isotope characteristics of urban shallow groundwater in Three Gorges Reservoir Area and indicative significance[J]. Acta Scientiae Circumstantiae, 2023, 43(6): 258 − 269. (in Chinese with English abstract)
[19] 王莹. 大峪口磷矿矿山环境现状与治理对策[J]. 化工矿产地质,2019,41(3):176 − 180. [WANG Ying. The status quo and countermeasures of mining environment in Dayukou phosphate mine[J]. Geology of Chemical Minerals,2019,41(3):176 − 180. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-5296.2019.03.010
WANG Ying. The status quo and countermeasures of mining environment in Dayukou phosphate mine[J]. Geology of Chemical Minerals, 2019, 41(3): 176 − 180. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-5296.2019.03.010
[20] 罗迪柯. 湖北荆襄磷矿地球化学特征及其矿床成因研究[D]. 北京:中国地质大学(北京),2011. [LUO Dike. Research on geochemistry characteristics and cause of formation of jingxiang phosphorus deposit in Hubei,China[D]. Beijing:China University of Geosciences,2011. (in Chinese with English abstract)]
LUO Dike. Research on geochemistry characteristics and cause of formation of jingxiang phosphorus deposit in Hubei, China[D]. Beijing: China University of Geosciences, 2011. (in Chinese with English abstract)
[21] LIU Yu,XIE Xianming,WANG Song,et al. Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China)[J]. Journal of Contaminant Hydrology,2023,259:104254. doi: 10.1016/j.jconhyd.2023.104254
[22] REN Xiaofei,LI Peiyue,HE Xiaodong,et al. Tracing the sources and evaporation fate of surface water and groundwater using stable isotopes of hydrogen and oxygen[J]. Science of The Total Environment,2024,931:172708. doi: 10.1016/j.scitotenv.2024.172708
[23] 廖驾,朱振华,彭毅,等. 湘西北地区岩溶地下水水化学与氘氧同位素特征分析[J]. 中国岩溶,2023,42(3):425 − 435. [LIAO Jia,ZHU Zhenhua,PENG Yi,et al. Analysis on D/18O and hydrochemical characteristics of Karst groundwater in northwestern Hunan Province[J]. Carsologica Sinica,2023,42(3):425 − 435. (in Chinese with English abstract)] doi: 10.11932/karst2023y003
LIAO Jia, ZHU Zhenhua, PENG Yi, et al. Analysis on D/18O and hydrochemical characteristics of Karst groundwater in northwestern Hunan Province[J]. Carsologica Sinica, 2023, 42(3): 425 − 435. (in Chinese with English abstract) doi: 10.11932/karst2023y003
[24] SREEDEVI P D,SREEKANTH P D,REDDY D V. Recharge environment and hydrogeochemical processes of groundwater in a crystalline aquifer in South India[J]. International Journal of Environmental Science and Technology,2022,19(6):4839 − 4856. doi: 10.1007/s13762-021-03335-w
[25] 赵家成,魏宝华,肖尚斌. 湖北宜昌地区大气降水中的稳定同位素特征[J]. 热带地理,2009,29(6):526 − 531. [ZHAO Jiacheng,WEI Baohua,XlAO Shangbin. Stable isotopic characteristics of atmospheric precipitation from Yichang,Hubei[J]. Tropical Geography,2009,29(6):526 − 531. (in Chinese with English abstract)] doi: 10.3969/j.issn.1001-5221.2009.06.004
ZHAO Jiacheng, WEI Baohua, XlAO Shangbin. Stable isotopic characteristics of atmospheric precipitation from Yichang, Hubei[J]. Tropical Geography, 2009, 29(6): 526 − 531. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-5221.2009.06.004
[26] LI Yihan,DUVERT C,XU Peng,et al. Contrasting origins of spring water in a ‘water tower’ of Northeast Asia:Evidence from stable isotopes and tritium[J]. Journal of Hydrology,2025,652:132661. doi: 10.1016/j.jhydrol.2024.132661
[27] MU Dawei,LI Peiyue,DE BAETS B,et al. A multi-perspective exploration of the salinization mechanisms of groundwater in the Guanzhong Basin,China[J]. Science of The Total Environment,2024,957:177421. doi: 10.1016/j.scitotenv.2024.177421
[28] LIU Kai,QIAO Xiaojuan,LI Baoling,et al. Characteristics of deuterium excess parameters for geothermal water in Beijing[J]. Environmental Earth Sciences,2016,75:1 − 10. doi: 10.1007/s12665-015-4873-x
[29] SUN Jing,TANG Changyuan,WU Pan,et al. Hydrogen and oxygen isotopic composition of karst waters with and without acid mine drainage:impacts at a SW China coalfield[J]. Science of the Total Environment,2014,487:123 − 129. doi: 10.1016/j.scitotenv.2014.04.008
[30] ZHANG Jie,JIN Menggui,CAO Mingda,et al. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model[J]. Applied Geochemistry,2021,134:105109. doi: 10.1016/j.apgeochem.2021.105109
[31] 林云,唐敦泽,武亚遵,等. 许家沟泉域岩溶地下水硫同位素特征及硫酸盐来源解析[J]. 干旱区资源与环境,2022,36(10):158 − 165. [LIN Yun,TANG Dunze,WU Yazun,et al. Sulfur isotope characteristics of karst groundwater in Xujiagou spring area and its sources[J]. Journal of Arid Land Resources and Environment,2022,36(10):158 − 165. (in Chinese with English abstract)]
LIN Yun, TANG Dunze, WU Yazun, et al. Sulfur isotope characteristics of karst groundwater in Xujiagou spring area and its sources[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 158 − 165. (in Chinese with English abstract)
[32] 王泽君,周宏,齐凌轩,等. 岩溶水系统结构和水文响应机制的定量识别方法:以三峡鱼迷岩溶水系统为例[J]. 地球科学,2020,45(12):4512 − 4523. [WANG Zejun,ZHOU Hong,QI Lingxuan,et al. Method for Characterizing Structure and Hydrological Response in Karst Water Systems:A Case Study in Y-M System in Three Gorges Area[J]. Ground Water,2020,45(12):4512 − 4523. (in Chinese with English abstract)]
WANG Zejun, ZHOU Hong, QI Lingxuan, et al. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area[J]. Ground Water, 2020, 45(12): 4512 − 4523. (in Chinese with English abstract)
[33] 韦栋文,王文海. 地下水示踪试验中穿透曲线的解析——以平果县平南赤泥堆场地下岩溶系统为例[J]. 地下水,2024,46(2):9 − 12. [WEI Dongwen,WANG Wenhai. Analysis of break through curve in groundwater tracer test:Taking the underground karst system of Pingnan red mud yard in Pingguo County as an example[J]. Ground Water,2024,46(2):9 − 12. (in Chinese with English abstract)]
WEI Dongwen, WANG Wenhai. Analysis of break through curve in groundwater tracer test: Taking the underground karst system of Pingnan red mud yard in Pingguo County as an example[J]. Ground Water, 2024, 46(2): 9 − 12. (in Chinese with English abstract)
[34] PEELY A B,MOHAMMADI Z,RAEISI E. Breakthrough curves of dye tracing tests in karst aquifers:Review of effective parameters based on synthetic modeling and field data[J]. Journal of Hydrology,2021,602:126604. doi: 10.1016/j.jhydrol.2021.126604
[35] 张人权,梁杏,靳孟贵,等. 水文地质学基础[M]. 北京:地质出版社,2018. [ZHANG Renquan,LIANG Xing,QI Menggui,et al. Fundamentals of Hydrogeology[M]. Beijing:Geological Publishing House,2018. (in Chinese)]
ZHANG Renquan, LIANG Xing, QI Menggui, et al. Fundamentals of Hydrogeology[M]. Beijing: Geological Publishing House, 2018. (in Chinese)
-