基于熵权-TOPSIS模型的京冀灰岩矿区土壤质量评价

姚瑶, 李玉倩, 唐诗琪, 张文超, 李金波, 李周园, 宋桂龙. 基于熵权-TOPSIS模型的京冀灰岩矿区土壤质量评价[J]. 水文地质工程地质, 2025, 52(4): 87-97. doi: 10.16030/j.cnki.issn.1000-3665.202502042
引用本文: 姚瑶, 李玉倩, 唐诗琪, 张文超, 李金波, 李周园, 宋桂龙. 基于熵权-TOPSIS模型的京冀灰岩矿区土壤质量评价[J]. 水文地质工程地质, 2025, 52(4): 87-97. doi: 10.16030/j.cnki.issn.1000-3665.202502042
YAO Yao, LI Yuqian, TANG Shiqi, ZHANG Wenchao, LI Jinbo, LI Zhouyuan, SONG Guilong. Entropy weight-TOPSIS model in soil quality evaluation of Beijing-Hebei limestone mining area[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 87-97. doi: 10.16030/j.cnki.issn.1000-3665.202502042
Citation: YAO Yao, LI Yuqian, TANG Shiqi, ZHANG Wenchao, LI Jinbo, LI Zhouyuan, SONG Guilong. Entropy weight-TOPSIS model in soil quality evaluation of Beijing-Hebei limestone mining area[J]. Hydrogeology & Engineering Geology, 2025, 52(4): 87-97. doi: 10.16030/j.cnki.issn.1000-3665.202502042

基于熵权-TOPSIS模型的京冀灰岩矿区土壤质量评价

  • 基金项目: 北京市地质矿产勘查开发集团有限公司委托项目(2023HXFWCXY005)
详细信息
    作者简介: 姚瑶(1998—),女,硕士,主要从事生态修复研究。E-mail:yaoyao98@bjfu.edu.cn
    通讯作者: 宋桂龙(1976—),男,博士,教授,主要从事裸露坡面植被恢复、草坪科学与技术研究。E-mail:syihan@163.com
  • 中图分类号: TD167

Entropy weight-TOPSIS model in soil quality evaluation of Beijing-Hebei limestone mining area

More Information
  • 进行京冀灰岩矿区生态修复是缓解区域生态环境压力、保障生态安全、促进可持续发展的迫切需求。土壤质量是灰岩矿区生态修复的关键,但目前对于灰岩矿区土壤质量及关键影响指标的认识仍存在不足,亟需建立科学客观的评价体系来指导生态修复工作。研究选取北京下庄、北京文殊峪、河北玉田、河北满城4个典型灰岩矿区,采集矿区平台场地未修复和修复的土壤样品,检测了pH、电导率、土壤养分、土壤酶活性、阳离子交换量等11个指标,采用熵权-TOPSIS模型评价京冀周边灰岩矿区土壤质量。结果表明:(1)在未修复矿区土壤质量评价中,碱性磷酸酶所占权重最大,其次是 阳离子交换量、脲酶、碱解氮、速效磷、速效钾、有机质、电导率、蔗糖酶、过氧化氢酶和pH;在修复矿区,碱性磷酸酶影响最大,其次是脲酶和蔗糖酶。(2)矿区未修复平台场地土壤质量相对贴近度为0.123~0.644,土壤质量总体水平相对较低;已修复平台场地土壤质量相对贴近度为0.145~0.873,土壤质量相较于未修复土壤有所提高,酶活性、有效磷和速效钾含量丰富,有机质和碱解氮总体水平偏低。(3)4个矿区土壤质量总体水平差异较大,下庄矿区修复效果最好,满城、文殊峪、玉田矿区相对较差,土壤质量水平还需提高。针对未来灰岩矿区平台场地修复,应该更加重视土壤酶活性相关指标,注意施肥比例等。研究成果可为灰岩矿区生态修复实践提供指导作用。

  • 加载中
  • 图 1  研究区分布

    Figure 1. 

    图 2  评价指标相关性矩阵

    Figure 2. 

    图 3  灰岩矿区未修复平台场地土壤质量评价指标权重

    Figure 3. 

    图 4  灰岩矿区已修复平台场地土壤质量评价指标权重

    Figure 4. 

    表 1  灰岩矿区未修复平台场地土壤质量评价指标描述性统计

    Table 1.  Descriptive statistics of soil quality evaluation index of un-rehabilitated platform site in the limestone mining area

    指标 最小值 最大值 平均值 标准差 变异系数
    pH 7.35 8.62 8.07 0.28 0.03
    EC/(mS·cm−1 0.06 0.40 0.10 0.06 0.59
    有机质/(g·kg−1 1.17 10.00 4.71 2.25 0.48
    速效钾/(mg·kg−1 9.76 146.20 46.54 31.93 0.69
    有效磷/(mg·kg−1 0.20 6.20 1.97 1.63 0.83
    碱解氮/(mg·kg−1 4.73 44.38 15.00 9.96 0.66
    CEC/(mol·kg−1 0.50 20.70 4.45 4.99 1.12
    过氧化氢酶/(μmol·g−1 121.53 499.15 310.57 97.22 0.31
    碱性磷酸酶/(nmol·g−1 0.52 967.41 167.72 226.36 1.35
    脲酶/(μg·g−1 12.45 326.71 78.83 80.56 1.02
    蔗糖酶/(mg·g−1 0.36 12.02 4.78 2.85 0.60
      注:变异系数无单位,表2同。
    下载: 导出CSV

    表 2  灰岩矿区已修复平台场地土壤质量评价指标描述性统计

    Table 2.  Descriptive statistics of soil quality evaluation index of rehabilitated platform site in the limestone mining area

    指标 最小值 最大值 平均值 标准差 变异系数
    pH 7.56 8.46 7.96 0.22 0.03
    EC/(mS·cm−1 0.07 0.21 0.12 0.03 0.29
    有机质/(g·kg−1 2.22 54.01 9.18 11.29 1.23
    速效钾/(mg·kg−1 73.96 229.63 119.87 37.91 0.32
    有效磷/(mg·kg−1 2.80 49.00 11.26 10.31 0.92
    碱解氮/(mg·kg−1 9.09 214.66 45.86 55.60 1.21
    CEC/(mol·kg−1 5.90 24.00 13.12 5.71 0.44
    过氧化氢酶/(μmol·g−1 211.41 468.24 347.70 58.86 0.17
    碱性磷酸酶/(nmol·g−1 1.47 7509.89 1227.83 1847.54 1.50
    脲酶/(μg·g−1 15.76 2156.94 264.16 436.25 1.65
    蔗糖酶/(mg·g−1 0.47 51.34 15.46 16.02 1.04
    下载: 导出CSV

    表 3  灰岩矿区未修复平台场地土壤质量评价表

    Table 3.  Soil quality evaluation of un-rehabilitated platform site in the limestone mining area

    取样点 D+ D Ci 排名
    WSY-18 0.132 0.239 0.644 1
    YT-24 0.248 0.206 0.453 2
    MC-2 0.255 0.194 0.432 3
    MC-1 0.263 0.196 0.427 4
    XZ-11 0.258 0.179 0.409 5
    WSY-17 0.243 0.142 0.369 6
    YT-26 0.254 0.140 0.356 7
    XZ-9 0.255 0.129 0.337 8
    MC-3 0.288 0.135 0.318 9
    YT-30 0.273 0.115 0.296 10
    WSY-15 0.260 0.107 0.292 11
    XZ-8 0.267 0.097 0.266 12
    YT-22 0.293 0.106 0.266 13
    YT-29 0.274 0.097 0.262 14
    XZ-7 0.271 0.096 0.261 15
    WSY-13 0.291 0.101 0.259 16
    MC-6 0.315 0.109 0.258 17
    MC-4 0.309 0.106 0.255 18
    WSY-16 0.268 0.091 0.254 19
    YT-19 0.287 0.095 0.249 20
    XZ-10 0.295 0.097 0.247 21
    YT-27 0.277 0.090 0.245 22
    YT-28 0.295 0.086 0.225 23
    XZ-12 0.297 0.078 0.207 24
    WSY-14 0.289 0.074 0.205 25
    YT-25 0.297 0.068 0.186 26
    YT-23 0.315 0.057 0.153 27
    YT-21 0.309 0.052 0.144 28
    YT-20 0.316 0.052 0.141 29
    MC-5 0.324 0.046 0.123 30
    下载: 导出CSV

    表 4  灰岩矿区未修复平台场地土壤质量综合评价指数分级区间

    Table 4.  Soil quality grading interval of un-rehabilitated platform site in the limestone mining area

    指标 矿区
    满城 文殊峪 下庄 玉田
    Ci 0.123~0.432 0.205~0.644 0.207~0.409 0.141~0.453
    下载: 导出CSV

    表 5  灰岩矿区已修复平台场地土壤质量评价表

    Table 5.  Soil quality evaluation table of rehabilitated platform site in limestone mining area

    取样点 D+ D- Ci 排名
    XZ-9 0.054 0.369 0.873 1
    WSY-13 0.273 0.198 0.421 3
    YT-22 0.281 0.169 0.376 4
    WSY-16 0.289 0.171 0.372 5
    WSY-14 0.300 0.134 0.309 6
    YT-20 0.318 0.135 0.297 7
    XZ-7 0.316 0.121 0.277 8
    WSY-12 0.305 0.111 0.267 9
    YT-18 0.352 0.118 0.252 10
    YT-21 0.343 0.114 0.249 11
    MC-6 0.326 0.103 0.241 12
    WSY-11 0.327 0.091 0.218 13
    XZ-8 0.340 0.084 0.198 14
    YT-17 0.357 0.088 0.198 15
    MC-2 0.362 0.084 0.189 16
    WSY-15 0.348 0.077 0.182 17
    MC-4 0.336 0.073 0.179 18
    MC-5 0.348 0.074 0.176 19
    YT-19 0.355 0.067 0.158 20
    MC-1 0.367 0.066 0.152 21
    MC-3 0.368 0.062 0.145 22
    下载: 导出CSV

    表 6  灰岩矿区已修复平台场地土壤质量综合评价指数分级区间

    Table 6.  Soil quality grading interval of rehabilitated platform site in the limestone mining area

    指标 矿区
    满城 文殊峪 下庄 玉田
    Ci 0.145~0.241 0.182~0.421 0.198~0.873 0.158~0.376
    下载: 导出CSV
  • [1]

    北京市规划和自然资源委员会. 截至2022年底北京市固体矿产资源储量统计表[R]. 北京:北京市规划和自然资源委员会,2024. [Beijing Municipal Commission of Planning and Natural Resources. Statistics table of solid mineral resources reserves in Beijing as of the end of 2022[R]. Beijing:Beijing Municipal Commission of Planning and Natural Resources,2024. (in Chinese)]

    Beijing Municipal Commission of Planning and Natural Resources. Statistics table of solid mineral resources reserves in Beijing as of the end of 2022[R]. Beijing: Beijing Municipal Commission of Planning and Natural Resources, 2024. (in Chinese)

    [2]

    北京市规划和自然资源委员会. 北京市规划和自然资源委员会2023年中央生态环境保护督察整改落实总体情况[EB/OL]. (2024-07-30)[2025-05-04]. [Beijing Municipal Commission of Planning and Natural Resources. The overall situation of the implementation of the 2023 central ecological and environmental protection inspection rectification by the Beijing Municipal Commission of Planning and Natural Resources[EB/OL]. (2024-07-30)[2025-05-04]. Https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/gzdt/sj/202407/t20240730_3762476.html.(in Chinese)]

    Beijing Municipal Commission of Planning and Natural Resources. The overall situation of the implementation of the 2023 central ecological and environmental protection inspection rectification by the Beijing Municipal Commission of Planning and Natural Resources[EB/OL]. (2024-07-30)[2025-05-04]. Https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/gzdt/sj/202407/t20240730_3762476.html.(in Chinese)

    [3]

    蒋文翠,杨继清,彭尔瑞,等. 矿山生态修复研究进展[J]. 矿业研究与开发,2022,42(4):127 − 132. [JIANG Wencui,YANG Jiqing,PENG Errui,et al. Research progress of mine ecological restoration[J]. Mining Research and Development,2022,42(4):127 − 132. (in Chinese with English abstract)]

    JIANG Wencui, YANG Jiqing, PENG Errui, et al. Research progress of mine ecological restoration[J]. Mining Research and Development, 2022, 42(4): 127 − 132. (in Chinese with English abstract)

    [4]

    张进德,郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报,2020,40(21):7921 − 7930. [ZHANG Jinde,XI Furui. Study on ecological restoration of abandoned mines in China[J]. Acta Ecologica Sinica,2020,40(21):7921 − 7930. (in Chinese with English abstract)]

    ZHANG Jinde, XI Furui. Study on ecological restoration of abandoned mines in China[J]. Acta Ecologica Sinica, 2020, 40(21): 7921 − 7930. (in Chinese with English abstract)

    [5]

    彭东海. 紫金山金矿废弃地植被恢复过程中群落及土壤特征研究[D]. 福州:福建农林大学,2016. [PENG Donghai. Community and soil characteristic during the process of vegetation restoration in Zijinshan Gold tailing wasteland[D]. Fuzhou:Fujian Agriculture and Forestry University,2016. (in Chinese with English abstract)]

    PENG Donghai. Community and soil characteristic during the process of vegetation restoration in Zijinshan Gold tailing wasteland[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese with English abstract)

    [6]

    王晶晶. 磷矿山废弃地生态修复的生态效益评价[D]. 武汉:武汉工程大学,2014. [WANG Jingjing. The ecological benefits evaluation of ecological restoration on phosphate mine wasteland[D]. Wuhan:Wuhan Institute of Technology,2014. (in Chinese with English abstract)]

    WANG Jingjing. The ecological benefits evaluation of ecological restoration on phosphate mine wasteland[D]. Wuhan: Wuhan Institute of Technology, 2014. (in Chinese with English abstract)

    [7]

    刘钊,韩磊,王丹月,等. 陕北黄土高原煤矿区土壤理化性质及质量评价[J]. 煤炭学报,2021,46(5):1555 − 1564. [LIU Zhao,HAN Lei,WANG Danyue,et al. Soil physicochemical properties and quality assessment in the coal mining area of Loess Plateau in Northern Shaanxi Province[J]. Journal of China Coal Society,2021,46(5):1555 − 1564. (in Chinese with English abstract)]

    LIU Zhao, HAN Lei, WANG Danyue, et al. Soil physicochemical properties and quality assessment in the coal mining area of Loess Plateau in Northern Shaanxi Province[J]. Journal of China Coal Society, 2021, 46(5): 1555 − 1564. (in Chinese with English abstract)

    [8]

    毛旭芮,王明力,杨建军,等. 采煤对露天煤矿土壤理化性质及可蚀性影响[J]. 西南农业学报,2020,33(11):2537 − 2544. [MAO Xurui,WANG Mingli,YANG Jianjun,et al. Effect of coal mining activities on soil properties and erodibility[J]. Southwest China Journal of Agricultural Sciences,2020,33(11):2537 − 2544. (in Chinese with English abstract)]

    MAO Xurui, WANG Mingli, YANG Jianjun, et al. Effect of coal mining activities on soil properties and erodibility[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11): 2537 − 2544. (in Chinese with English abstract)

    [9]

    张雅馥,王金满,祝宇成. 黄土区采煤塌陷对土壤全氮和有机质含量空间变异性的影响[J]. 生态学杂志,2018,37(6):1676 − 1684. [ZHANG Yafu,WANG Jinman,ZHU Yucheng. Effects of land subsidence caused by coal mining on the spatial variation of soil total nitrogen and organic matter concentrations in loess area[J]. Chinese Journal of Ecology,2018,37(6):1676 − 1684. (in Chinese with English abstract)]

    ZHANG Yafu, WANG Jinman, ZHU Yucheng. Effects of land subsidence caused by coal mining on the spatial variation of soil total nitrogen and organic matter concentrations in loess area[J]. Chinese Journal of Ecology, 2018, 37(6): 1676 − 1684. (in Chinese with English abstract)

    [10]

    闫美芳,王璐,郝存忠,等. 煤矿废弃地生态修复的土壤有机碳效应[J]. 生态学报,2019,39(5):1838 − 1845. [YAN Meifang,WANG Lu,HAO Cunzhong,et al. Effects of ecological restoration on soil organic carbon in post-mining lands[J]. Acta Ecologica Sinica,2019,39(5):1838 − 1845. (in Chinese with English abstract)]

    YAN Meifang, WANG Lu, HAO Cunzhong, et al. Effects of ecological restoration on soil organic carbon in post-mining lands[J]. Acta Ecologica Sinica, 2019, 39(5): 1838 − 1845. (in Chinese with English abstract)

    [11]

    张绍良,米家鑫,侯湖平,等. 矿山生态恢复研究进展——基于连续三届的世界生态恢复大会报告[J]. 生态学报,2018,38(15):5611 − 5619. [ZHANG Shaoliang,MI Jiaxin,HOU Huping,et al. Progress in mine ecological restoration research-report based on three consecutive world congresses on ecological restoration[J]. Acta Ecologica Sinica,2018,38(15):5611 − 5619. (in Chinese with English abstract)]

    ZHANG Shaoliang, MI Jiaxin, HOU Huping, et al. Progress in mine ecological restoration research-report based on three consecutive world congresses on ecological restoration[J]. Acta Ecologica Sinica, 2018, 38(15): 5611 − 5619. (in Chinese with English abstract)

    [12]

    LIU Xiaoyang,BAI Zhongke,ZHOU Wei,et al. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau,China[J]. Ecological Engineering,2017,98:228 − 239. doi: 10.1016/j.ecoleng.2016.10.078

    [13]

    李鑫,张文菊,邬磊,等. 土壤质量评价指标体系的构建及评价方法[J]. 中国农业科学,2021,54(14):3043 − 3056. [LI Xin,ZHANG WenJu,WU Lei,et al. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation[J]. Scientia Agricultura Sinica,2021,54(14):3043 − 3056. (in Chinese with English abstract)]

    LI Xin, ZHANG WenJu, WU Lei, et al. Advance in Indicator Screening and Methodologies of Soil Quality Evaluation[J]. Scientia Agricultura Sinica, 2021, 54(14): 3043 − 3056. (in Chinese with English abstract)

    [14]

    MUÑOZ-ROJAS M. Soil quality indicators:Critical tools in ecosystem restoration[J]. Current Opinion in Environmental Science & Health,2018,5:47 − 52.

    [15]

    DING Xiaowen,CHONG Xiao,BAO Zhengfeng,et al. Fuzzy comprehensive assessment method based on the entropy weight method and its application in the water environmental safety evaluation of the Heshangshan drinking water source area,three gorges reservoir area,China[J]. Water,2017,9(5):329. doi: 10.3390/w9050329

    [16]

    TAHERIYOUN M,KARAMOUZ M,BAGHVAND A. Development of an entropy-based fuzzy eutrophication index for reservior water quality evaluation[J]. Iranian Journal of Environmental Health Science & Engineering,2010,7:1 − 14.

    [17]

    BEHZADIAN M,KHANMOHAMMADI OTAGHSARA S,YAZDANI M,et al. A state-of the-art survey of TOPSIS applications[J]. Expert Systems with Applications,2012,39(17):13051 − 13069. doi: 10.1016/j.eswa.2012.05.056

    [18]

    杜挺,谢贤健,梁海艳,等. 基于熵权TOPSIS和GIS的重庆市县域经济综合评价及空间分析[J]. 经济地理,2014,34(6):40 − 47. [DU Ting,XIE Xianjian,LIANG Haiyan,et al. County economy comprehensive evaluation and spatial analysis in Chongqing city based on entropy Weight-TOPSIS and GIS[J]. Economic Geography,2014,34(6):40 − 47. (in Chinese with English abstract)]

    DU Ting, XIE Xianjian, LIANG Haiyan, et al. County economy comprehensive evaluation and spatial analysis in Chongqing city based on entropy Weight-TOPSIS and GIS[J]. Economic Geography, 2014, 34(6): 40 − 47. (in Chinese with English abstract)

    [19]

    HUANG Jingwen. Combining entropy weight and TOPSIS method for information system selection[C]//2008 IEEE Conference on Cybernetics and Intelligent Systems. Piscataway:IEEE,2008:1965 − 1968.

    [20]

    AN Yida,ZHANG Lei,WANG Qing,et al. Soil quality assessment of different land use types based on TOPSIS method in hilly sandy area of loess plateau,northern China[J]. International Journal of Environmental Research and Public Health,2022,19(24):17059. doi: 10.3390/ijerph192417059

    [21]

    MAURYA S,ABRAHAM J S,SOMASUNDARAM S,et al. Indicators for assessment of soil quality:A mini-review[J]. Environmental Monitoring and Assessment,2020,192(9):604. doi: 10.1007/s10661-020-08556-z

    [22]

    北京市市场监督管理局. 矿山植被生态修复技术规范:DB11/T 1690—2019[S]. 北京:北京市市场监督管理局,2019. [Beijing Municipal Bureau of Market Supervision and Administration. Technical regulations for revegetation of mines:DB11/T 1690—2019[S]. Beijing:Beijing Municipal Bureau of Market Supervision and Administration,2019. (in Chinese)]

    Beijing Municipal Bureau of Market Supervision and Administration. Technical regulations for revegetation of mines: DB11/T 1690—2019[S]. Beijing: Beijing Municipal Bureau of Market Supervision and Administration, 2019. (in Chinese)

    [23]

    中华人民共和国住房和城乡建设部. 绿化种植土壤:CJ/T 340—2016[S]. 北京:中国标准出版社,2016. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Planting soil for greening:CJ/T 340—2016[S]. Beijing:Standards Press of China,2016. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Planting soil for greening: CJ/T 340—2016[S]. Beijing: Standards Press of China, 2016. (in Chinese)

    [24]

    国家市场监督管理总局,国家标准化管理委员会. 矿山土地复垦与生态修复监测评价技术规范:GB/T 43935—2024[S]. 北京:中国标准出版社,2024. [State Administration for Market Regulation,National Standardization Administration. Technical specification for monitoring and evaluation of land reclamation and ecological restoration in mines:GB/T 43935—2024[S]. Beijing:Standards Press of China,2024. (in Chinese)]

    State Administration for Market Regulation, National Standardization Administration. Technical specification for monitoring and evaluation of land reclamation and ecological restoration in mines: GB/T 43935—2024[S]. Beijing: Standards Press of China, 2024. (in Chinese)

    [25]

    中华人民共和国国土资源部. 土地复垦质量控制标准:TD/T 1036—2013[S]. 北京:中国标准出版社,2013. [Ministry of Land and Resources of the People’s Republic of China. Completion standards on land reclamation quality:TD/T 1036—2013[S]. Beijing:Standards Press of China,2013. (in Chinese)]

    Ministry of Land and Resources of the People’s Republic of China. Completion standards on land reclamation quality: TD/T 1036—2013[S]. Beijing: Standards Press of China, 2013. (in Chinese)

    [26]

    杨建宇,欧聪,李琪,等. 基于云模型的耕地土壤养分模糊综合评价[J]. 农业机械学报,2018,49(1):251 − 257. [YANG Jianyu,OU Cong,LI Qi,et al. Fuzzy synthetic evaluation of soil nutrients in cultivated land based on cloud model in Da’an City,Jilin Province[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(1):251 − 257. (in Chinese with English abstract)]

    YANG Jianyu, OU Cong, LI Qi, et al. Fuzzy synthetic evaluation of soil nutrients in cultivated land based on cloud model in Da’an City, Jilin Province[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 251 − 257. (in Chinese with English abstract)

    [27]

    吴玉红,李云,郝兴顺,等. 土壤质量评价国内外研究进展[J]. 安徽农学通报,2012,18(16):24 − 25. [WU Yuhong,LI Yun,HAO Xingshun,et al. Research progress of soil quality evaluation[J]. Anhui Agricultural Science Bulletin,2012,18(16):24 − 25. (in Chinese with English abstract)]

    WU Yuhong, LI Yun, HAO Xingshun, et al. Research progress of soil quality evaluation[J]. Anhui Agricultural Science Bulletin, 2012, 18(16): 24 − 25. (in Chinese with English abstract)

    [28]

    鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:1-30. [LU Rukun. Methods for agrochemical analysis of soil[M]. Beijing:China Agricultural Science and Technology Press,2000:1 − 30. (in Chinese)]

    LU Rukun. Methods for agrochemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 2000: 1 − 30. (in Chinese)

    [29]

    王建华,姜大川,肖伟华,等. 水资源承载力理论基础探析:定义内涵与科学问题[J]. 水利学报,2017,48(12):1399 − 1409. [WANG Jianhua,JIANG Dachuan,XIAO Weihua,et al. Study on theoretical analysis of water resources carrying capacity:Definition and scientific topics[J]. Journal of Hydraulic Engineering,2017,48(12):1399 − 1409. (in Chinese with English abstract)]

    WANG Jianhua, JIANG Dachuan, XIAO Weihua, et al. Study on theoretical analysis of water resources carrying capacity: Definition and scientific topics[J]. Journal of Hydraulic Engineering, 2017, 48(12): 1399 − 1409. (in Chinese with English abstract)

    [30]

    KYUNG D,KIM D,KIM G,et al. Vertical load-carrying behavior and design models for micropiles considering foundation configuration conditions[J]. Canadian Geotechnical Journal,2017,54(2):234 − 247. doi: 10.1139/cgj-2015-0472

    [31]

    KUO Ting. A modified TOPSIS with a different ranking index[J]. European Journal of Operational Research,2017,260(1):152 − 160. doi: 10.1016/j.ejor.2016.11.052

    [32]

    BAUWE A,TIEDEMANN S,KAHLE P,et al. Does the temporal resolution of precipitation input influence the simulated hydrological components employing the SWAT model?[J]. Journal of the American Water Resources Association,2017,53(5):997 − 1007. doi: 10.1111/1752-1688.12560

    [33]

    WANG Lihong,DONG Manpei. An entropy Weight-TOPSIS based method for e-commerce logistics service quality evaluation[J]. Tehnicki Vjesnik,2023,30(4):1253 − 1256.

    [34]

    BRUNO ROCHA MARTINS W,DOUGLAS ROQUE LIMA M,DE OLIVEIRA BARROS JUNIOR U,et al. Ecological methods and indicators for recovering and monitoring ecosystems after mining:A global literature review[J]. Ecological Engineering,2020,145:105707. doi: 10.1016/j.ecoleng.2019.105707

    [35]

    LU Peng,ZHANG Yamei,JI Bingjie,et al. PhoD harboring microbial community and alkaline phosphatase as affected by long term fertilization regimes on a calcareous soil[J]. Agronomy,2023,13(2):363. doi: 10.3390/agronomy13020363

    [36]

    KHADEM A,RAIESI F. Response of soil alkaline phosphatase to biochar amendments:Changes in kinetic and thermodynamic characteristics[J]. Geoderma,2019,337:44 − 54. doi: 10.1016/j.geoderma.2018.09.001

    [37]

    ERKOÇAK A,DENGIZ O. Phosphatase enzyme activity in different soils formed on bazaltic parent material under semi humid climate conditions[J]. International Journal of Agriculture Environment and Food Sciences,2019,3(1):22 − 28. doi: 10.31015/jaefs.2019.1.6

    [38]

    李媛媛,周运超,邹军. 黔中石灰岩地区灌木林土壤酶活性及其与植物多样性间相关性的研究[J]. 江苏林业科技,2014,41(2):11 − 15. [LI Yuanyuan,ZHOU Yunchao,ZOU Jun. Activities of soil enzyme and their correlation with plant species diversity in typical shrubbery in the limestone area of Central Guizhou[J]. Journal of Jiangsu Forestry Science & Technology,2014,41(2):11 − 15. (in Chinese with English abstract)]

    LI Yuanyuan, ZHOU Yunchao, ZOU Jun. Activities of soil enzyme and their correlation with plant species diversity in typical shrubbery in the limestone area of Central Guizhou[J]. Journal of Jiangsu Forestry Science & Technology, 2014, 41(2): 11 − 15. (in Chinese with English abstract)

    [39]

    何跃军,刘锦春,钟章成,等. 重庆石灰岩地区植被恢复过程土壤酶活性与植物多样性的关系[J]. 西南大学学报(自然科学版),2008,30(4):139 − 143. [HE Yuejun,LIU Jinchun,ZHONG Zhangcheng,et al. Correlation between soil enzyme activities and biodiversity during the recovery process of vegetation in a limestone area[J]. Journal of Southwest University (Natural Science Edition),2008,30(4):139 − 143. (in Chinese with English abstract)]

    HE Yuejun, LIU Jinchun, ZHONG Zhangcheng, et al. Correlation between soil enzyme activities and biodiversity during the recovery process of vegetation in a limestone area[J]. Journal of Southwest University (Natural Science Edition), 2008, 30(4): 139 − 143. (in Chinese with English abstract)

    [40]

    贡璐,张雪妮,冉启洋. 基于最小数据集的塔里木河上游绿洲土壤质量评价[J]. 土壤学报,2015,52(3):682 − 689. [GONG Lu,ZHANG Xueni,RAN Qiyang. Quality assessment of oasis soil in the upper reaches of Tarim river based on minimum data set[J]. Acta Pedologica Sinica,2015,52(3):682 − 689. (in Chinese with English abstract)]

    GONG Lu, ZHANG Xueni, RAN Qiyang. Quality assessment of oasis soil in the upper reaches of Tarim river based on minimum data set[J]. Acta Pedologica Sinica, 2015, 52(3): 682 − 689. (in Chinese with English abstract)

    [41]

    NORTON L D,ZHANG X J. Liming to improve chemical and physical properties of soil[M]//WALLACE A,Terry R E. Handbook of Soil Conditioners:Substances that enhance the physical properties of soil. Boca Raton:CRC Press,1998:309 − 331.

    [42]

    COHEN-FERNÁNDEZ A C,ANNE N M,WILKINSON S R. Anthroposol development from limestone quarry substrates[J]. Canadian Journal of Soil Science,2013,93(5):555 − 566. doi: 10.4141/cjss2012-120

    [43]

    HINDERSAH R,MAULUDY N M,SUMBADA R A R,et al. Soil properties of overburden and topsoil in limestone mining area:A preliminary study[J]. Journal of Degraded & Mining Lands Management,2024,12(1):6705 − 6713.

    [44]

    CHENOT J,JAUNATRE R,BUISSON E,et al. Impact of quarry exploitation and disuse on pedogenesis[J]. Catena,2018,160:354 − 365. doi: 10.1016/j.catena.2017.09.012

    [45]

    WAN Renping,LUO Deyi,LIU Jianyi,et al. Superior improvement on soil quality by Pennisetum sinese vegetation restoration in the dry-hot valley region,SW China[J]. Science of the Total Environment,2023,878:163185. doi: 10.1016/j.scitotenv.2023.163185

  • 加载中

(4)

(6)

计量
  • 文章访问数:  14
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2025-02-15
修回日期:  2025-03-11
刊出日期:  2025-07-15

目录