Optimization of composite atmospheric hygroscopic gel preparation and its application in ecological restoration in arid-semi-arid regions
-
摘要:
水资源匮乏是限制干旱-半干旱地区生态修复效果的主要原因,吸附式空气取水技术在解决生态修复植物需水问题方面展现出极大潜力,但目前该领域应用研究相对较少。通过将异丙基丙烯酰胺(N-isopropylacrylamide,NIPAM)和丙烯酰胺(acrylamide,AM)共聚合成新型复合凝胶并负载吸湿盐,测试凝胶配比对其吸水与释水性能的影响以及在不同温湿度和光照条件下的性能及野外产水表现。结果表明:当NIPAM∶AM质量比为1∶1.5时复合凝胶的吸附与释水性能达到平衡,综合产水量最高,溶胀率达到24.7 g/g的同时可实现75.3%的释水,比聚-异丙基丙烯酰胺凝胶的产水量增加了31.3%;在温度20 °C,相对湿度50%条件下,复合凝胶负载的吸湿盐CaCl2∶LiCl摩尔比为1∶7时,吸湿量最高,为负载纯LiCl凝胶的1.14倍,且在相对湿度30%~100%条件下均可吸湿。将以上优化后的复合吸湿凝胶应用于干旱-半干旱地区矿山生态修复工程中,夏季日均产水量约为0.74 g/g,当用量在14.1~17.6 g时可弥补基于彭曼公式计算的植物生态需水量缺口,验证了应用的可行性。
Abstract:Water scarcity in arid and semi-arid regions is a critical constraint on the effectiveness of ecological restoration efforts. Adsorptive atmospheric water harvesting (AWH) technologies have emerged as promising tools to alleviate plant water stress in such environments; however, their application in ecological restoration remains underexplored. This study co-polymerized NIPAM and AM to form a new composite gel and loaded it with hygroscopic salts to test the effects of gel ratios on the water absorption and release properties, as well as the performance under different temperature, humidity and light conditions, and water production in the field. The results show that the composite gel with NIPAM∶AM mass ratio of 1∶1.5 had the optimal balance between water adsorption and water release, with the dissolution rate reached 24.7 g/g, while 75.3% of water release could be realized, which was 31.3% more than the water production of the PNIPAM gel. Under the condition of temperature 20 °C and relative humidity (RH) 50%, the composite gel loaded with hygroscopic salt CaCl2∶LiCl molar ratio of 1∶7 has the highest hygroscopicity, which is 1.14 times that of the loaded pure LiCl gel, and can be hygroscopic under the condition of 30%−100% RH. The above optimized composite hygroscopic gel was applied to the ecological restoration project of mines in arid-semi-arid areas. The average daily water yield in summer was about 0.74 g/g, which could make up for the shortfall of the ecological water demand of plants based on Penman's formula when the dosage was in the range of 14.1−17.6 g. The results confirm the feasibility of the application.
-
-
表 1 复合凝胶内的质量比例
Table 1. Mass ratio within the composite gel
序号 A1 A2 A3 A4 A5 A6 A7 NIPAM占比/% 100 66.7 60 50 40 33.3 0 AM占比/% 0 33.3 40 50 60 66.7 100 表 2 吸湿盐的比例
Table 2. Ratio of hygroscopic salt
序号 S1 S2 S3 S4 CaCl2∶LiCl(摩尔比) 1∶4 1∶7 1∶9 0∶1 表 3 不同温度和光强下的释水比例
Table 3. Percentage of water release at different temperatures and light intensities
光强/(104 LUX) 释水比例/% 35 °C 30 °C 25 °C 20 °C 9 68.4 63.8 46.7 41.5 12 71.0 68.6 61.4 56.1 15 71.3 70.9 66.3 57.2 -
[1] 阴晓伟,吴一平,赵文智,等. 西北旱区潜在蒸散发的气候敏感性及其干旱特征研究[J]. 水文地质工程地质,2021,48(3):20 − 30. [YIN Xiaowei,WU Yiping,ZHAO Wenzhi,et al. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of northwest China[J]. Hydrogeology & Engineering Geology,2021,48(3):20 − 30. (in Chinese with English abstract)]
YIN Xiaowei, WU Yiping, ZHAO Wenzhi, et al. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of northwest China[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 20 − 30. (in Chinese with English abstract)
[2] CHEN Xiaodong,ZHAO Tongqian,NIE Xiaojun,et al. Soil substrate characteristics for planting hole greening technology for high,steep,rocky slope vegetation in semi-arid areas[J]. Land,2024,13(3):287. doi: 10.3390/land13030287
[3] 陈晓东,聂小军,张永慧,等. 中国高陡岩质边坡植被重建技术现状与展望[J]. 环境科学与技术,2024,47(增刊1):70 − 78. [CHEN Xiaodong,NIE Xiaojun,ZHANG Yonghui,et al. Study status and prospect of revegetation technology for high and steep rocky slopes in China[J]. Environmental Science & Technology,2024,47(Sup1):70 − 78. (in Chinese with English abstract)]
CHEN Xiaodong, NIE Xiaojun, ZHANG Yonghui, et al. Study status and prospect of revegetation technology for high and steep rocky slopes in China[J]. Environmental Science & Technology, 2024, 47(Sup1): 70 − 78. (in Chinese with English abstract)
[4] WANG Zhongqiang,WU Lianghuan,LIU Tingting. Revegetation of steep rocky slopes:Planting climbing vegetation species in artificially drilled holes[J]. Ecological Engineering,2009,35(7):1079 − 1084. doi: 10.1016/j.ecoleng.2009.03.021
[5] 何丽. 露天矿山高陡岩质边坡生态修复实践[J]. 中国金属通报,2023(9):116 − 118. [HE Li. Practical ecological restoration of high and steep rock slopes in open-pit mines[J]. China Metal Bulletin,2023(9):116 − 118. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-1667.2023.09.039
HE Li. Practical ecological restoration of high and steep rock slopes in open-pit mines[J]. China Metal Bulletin, 2023(9): 116 − 118. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1667.2023.09.039
[6] 刘伟,尹勤瑞,刘祥宏. 煤矿区生态自然修复及其人工促进模式探讨[J]. 煤田地质与勘探,2023,51(4):110 − 124. [LIU Wei,YIN Qinrui,LIU Xianghong. Ecological natural restoration and its artificial promotion mode in coal mining area[J]. Coal Geology & Exploration,2023,51(4):110 − 124. (in Chinese with English abstract)] doi: 10.12363/issn.1001-1986.22.06.0512
LIU Wei, YIN Qinrui, LIU Xianghong. Ecological natural restoration and its artificial promotion mode in coal mining area[J]. Coal Geology & Exploration, 2023, 51(4): 110 − 124. (in Chinese with English abstract) doi: 10.12363/issn.1001-1986.22.06.0512
[7] 喻永祥,郝社锋,蒋波,等. 基于聚氨酯复合基材的岩质边坡客土生态修复试验研究[J]. 水文地质工程地质,2021,48(2):174 − 181. [YU Yongxiang,HAO Shefeng,JIANG Bo,et al. An experimental study of the ecological restoration of rock slope based on polyurethane composite-based materials[J]. Hydrogeology & Engineering Geology,2021,48(2):174 − 181. (in Chinese with English abstract)]
YU Yongxiang, HAO Shefeng, JIANG Bo, et al. An experimental study of the ecological restoration of rock slope based on polyurethane composite-based materials[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 174 − 181. (in Chinese with English abstract)
[8] 赵欣,王佟,李聪聪,等. 露天矿区生态地质层修复中地形重塑层的构建技术及应用[J]. 煤田地质与勘探,2023,51(7):113 − 122. [ZHAO Xin,WANG Tong,LI Congcong,et al. Construction and restoration technology of terrain remodeling layer in the restoration of ecological geological layer in open-pit mining areas[J]. Coal Geology & Exploration,2023,51(7):113 − 122. (in Chinese with English abstract)] doi: 10.12363/issn.1001-1986.23.02.0096
ZHAO Xin, WANG Tong, LI Congcong, et al. Construction and restoration technology of terrain remodeling layer in the restoration of ecological geological layer in open-pit mining areas[J]. Coal Geology & Exploration, 2023, 51(7): 113 − 122. (in Chinese with English abstract) doi: 10.12363/issn.1001-1986.23.02.0096
[9] 杨阳,赵金召,张兆长,等. 矿山高陡岩质边坡复绿中节水灌溉技术现状与发展趋势[J]. 资源环境与工程,2022,36(2):239 − 243. [YANG Yang,ZHAO Jinzhao,ZHANG Zhaochang,et al. Present situation and development trend of water-saving irrigation technology in regreening of high-steep rock slope in mines[J]. Resources Environment & Engineering,2022,36(2):239 − 243. (in Chinese with English abstract)]
YANG Yang, ZHAO Jinzhao, ZHANG Zhaochang, et al. Present situation and development trend of water-saving irrigation technology in regreening of high-steep rock slope in mines[J]. Resources Environment & Engineering, 2022, 36(2): 239 − 243. (in Chinese with English abstract)
[10] 赵金召,李予红,孙闪闪,等. 毛细水在矿山高陡岩质边坡生态修复绿化养护中的应用研究[J]. 节水灌溉,2022(1):80 − 84. [ZHAO Jinzhao,LI Yuhong,SUN Shanshan,et al. Application of capillary water in ecological restoration and greening maintenance of high and steep rock slope in mines[J]. Water Saving Irrigation,2022(1):80 − 84. (in Chinese with English abstract)] doi: 10.3969/j.issn.1007-4929.2022.01.015
ZHAO Jinzhao, LI Yuhong, SUN Shanshan, et al. Application of capillary water in ecological restoration and greening maintenance of high and steep rock slope in mines[J]. Water Saving Irrigation, 2022(1): 80 − 84. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-4929.2022.01.015
[11] ZHUANG Shendong,QI Heshan,WANG Xueyang,et al. Advances in solar-driven hygroscopic water harvesting[J]. Global Challenges,2021,5(1):2000085. doi: 10.1002/gch2.202000085
[12] 李吉焱,邢郭宇,景艳菊,等. 太阳能驱动大气集水:进展与展望[J]. 精细化工,2023,40(6):1214 − 1224. [LI Jiyan,XING Guoyu,JING Yanju,et al. Solar-driven atmospheric water harvesting:Progress and prospect[J]. Fine Chemicals,2023,40(6):1214 − 1224. (in Chinese with English abstract)]
LI Jiyan, XING Guoyu, JING Yanju, et al. Solar-driven atmospheric water harvesting: Progress and prospect[J]. Fine Chemicals, 2023, 40(6): 1214 − 1224. (in Chinese with English abstract)
[13] SHI Wen,GUAN Weixin,LEI Chuxin,et al. Sorbents for atmospheric water harvesting:From design principles to applications[J]. Angewandte Chemie International Edition,2022,61(43):e202211267. doi: 10.1002/anie.202211267
[14] 张东明,张建,苏方舟. 高陡岩质边坡生态环境修复治理分析[J]. 中国资源综合利用,2023,41(3):157 − 159. [ZHANG Dongming,ZHANG Jian,SU Fangzhou. Analysis on ecological environment restoration and treatment of high and steep rock slope[J]. China Resources Comprehensive Utilization,2023,41(3):157 − 159. (in Chinese with English abstract)]
ZHANG Dongming, ZHANG Jian, SU Fangzhou. Analysis on ecological environment restoration and treatment of high and steep rock slope[J]. China Resources Comprehensive Utilization, 2023, 41(3): 157 − 159. (in Chinese with English abstract)
[15] 刘子贤,尹智超,张博. 太阳能空气取水/制水技术浅析[J]. 太阳能,2018(12):68 − 70. [LIU Zixian,YIN Zhichao,ZHANG Bo. An analysis on solar water intake/water production technology[J]. Solar Energy,2018(12):68 − 70. (in Chinese with English abstract)] doi: 10.3969/j.issn.1003-0417.2018.12.015
LIU Zixian, YIN Zhichao, ZHANG Bo. An analysis on solar water intake/water production technology[J]. Solar Energy, 2018(12): 68 − 70. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-0417.2018.12.015
[16] 赵惠忠,雷敏,黄天厚,等. 太阳能吸附式空气取水研究进展[J]. 应用化工,2020,49(2):414 − 419. [ZHAO Huizhong,LEI Min,HUANG Tianhou,et al. A review on the development of water extraction from atmospheric air[J]. Applied Chemical Industry,2020,49(2):414 − 419. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-3206.2020.02.033
ZHAO Huizhong, LEI Min, HUANG Tianhou, et al. A review on the development of water extraction from atmospheric air[J]. Applied Chemical Industry, 2020, 49(2): 414 − 419. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-3206.2020.02.033
[17] 李清慧,潘晓春,佐晓波,等. 吸附/吸收式空气取水技术研究进展[J]. 广东工业大学学报,2024,41(2):1 − 10. [LI Qinghui,PAN Xiaochun,ZUO Xiaobo,et al. Research progress in adsorption/absorption-based atmospheric water harvesting[J]. Journal of Guangdong University of Technology,2024,41(2):1 − 10. (in Chinese with English abstract)] doi: 10.12052/gdutxb.230090
LI Qinghui, PAN Xiaochun, ZUO Xiaobo, et al. Research progress in adsorption/absorption-based atmospheric water harvesting[J]. Journal of Guangdong University of Technology, 2024, 41(2): 1 − 10. (in Chinese with English abstract) doi: 10.12052/gdutxb.230090
[18] 邓昊,陈珍慧,林越,等. 太阳能吸附式空气取水材料与系统研究进展[J]. 现代化工,2023,43(12):36 − 41. [DENG Hao,CHEN Zhenhui,LIN Yue,et al. Research progress on solar energy-driven sorption based atmospheric water harvesting materials and system[J]. Modern Chemical Industry,2023,43(12):36 − 41. (in Chinese with English abstract)]
DENG Hao, CHEN Zhenhui, LIN Yue, et al. Research progress on solar energy-driven sorption based atmospheric water harvesting materials and system[J]. Modern Chemical Industry, 2023, 43(12): 36 − 41. (in Chinese with English abstract)
[19] ABDULBAKEE MUHAMMED H,SHAHADAT M,TWEIB S A,et al. Harvesting of atmospheric water using polymer-based hybrid hydrogels[J]. Chembioeng Reviews,2024,11(2):197 − 214. doi: 10.1002/cben.202300032
[20] SHEN Yifan,LI Qi,PEI Xiangjun,et al. Ecological restoration of engineering slopes in China-A review[J]. Sustainability,2023,15(6):5354. doi: 10.3390/su15065354
[21] 霍香岩,许嘉兴,严泰森,等. 吸附式空气取水物理吸附材料研究进展[J]. 科学通报,2023,68(11):1392 − 1405. [HUO Xiangyan,XU Jiaxing,YAN Taisen,et al. Research status of physical sorbents for sorption-based atmospheric water harvesting[J]. Chinese Science Bulletin,2023,68(11):1392 − 1405. (in Chinese with English abstract)] doi: 10.1360/TB-2022-0939
HUO Xiangyan, XU Jiaxing, YAN Taisen, et al. Research status of physical sorbents for sorption-based atmospheric water harvesting[J]. Chinese Science Bulletin, 2023, 68(11): 1392 − 1405. (in Chinese with English abstract) doi: 10.1360/TB-2022-0939
[22] 姜海凤,侯立安,张林. 空气取水非常规技术及材料、装备研究进展[J]. 高校化学工程学报,2018,32(1):1 − 7. [JIANG Haifeng,HOU Lian,ZHANG Lin. Review on unconventional techniques,materials and equipment for water extraction from air[J]. Journal of Chemical Engineering of Chinese Universities,2018,32(1):1 − 7. (in Chinese with English abstract)] doi: 10.3969/j.issn.1003-9015.2018.01.001
JIANG Haifeng, HOU Lian, ZHANG Lin. Review on unconventional techniques, materials and equipment for water extraction from air[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 1 − 7. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-9015.2018.01.001
[23] 刘金炜,何阳,赵华章. 吸附式空气取水技术原理和研究进展[J]. 新兴科学和技术趋势,2023,2(4):346 − 359. [LIU Jinwei,HE Yang,ZHAO Huazhang. Principle and research progress of sorption-based atmospheric water harvesting[J]. Emerging Science and Technology,2023,2(4):346 − 359. (in Chinese with English abstract)] doi: 10.12405/j.issn.2097-1486.2023.04.002
LIU Jinwei, HE Yang, ZHAO Huazhang. Principle and research progress of sorption-based atmospheric water harvesting[J]. Emerging Science and Technology, 2023, 2(4): 346 − 359. (in Chinese with English abstract) doi: 10.12405/j.issn.2097-1486.2023.04.002
[24] FENG An,AKTHER N,DUAN Xiaofei,et al. Recent development of atmospheric water harvesting materials:A review[J]. ACS Matrials Au,2022,2(5):576 − 595. doi: 10.1021/acsmaterialsau.2c00027
[25] WANG Zhen,XU X K,YAN T,et al. Preparation and thermal properties of zeolite 13X/MgSO4-LiCl binary-salt composite material for sorption heat storage[J]. Applied Thermal Engineering,2024,245:122905. doi: 10.1016/j.applthermaleng.2024.122905
[26] 王胜楠,陈康,郑旭. 吸附式空气取水系统用吸湿材料研究进展[J]. 化工进展,2022,41(7):3636 − 3647. [WANG Shengnan,CHEN Kang,ZHENG Xu. Recent progress of moisture sorbent for adsorption-based atmospheric water harvesting[J]. Chemical Industry and Engineering Progress,2022,41(7):3636 − 3647. (in Chinese with English abstract)]
WANG Shengnan, CHEN Kang, ZHENG Xu. Recent progress of moisture sorbent for adsorption-based atmospheric water harvesting[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3636 − 3647. (in Chinese with English abstract)
[27] 王子航,梁瑞升,邓超和,等. 离子凝胶复合吸附剂的制备及空气取水性能[J]. 化工进展,2022,41(增刊1):389 − 396. [WANG Zihang,LIANG Ruisheng,DENG Chaohe,et al. Preparation and atmosphere water harvesting performance of ionic gel composite adsorbent[J]. Chemical Industry and Engineering Progress,2022,41(Sup1):389 − 396. (in Chinese with English abstract)]
WANG Zihang, LIANG Ruisheng, DENG Chaohe, et al. Preparation and atmosphere water harvesting performance of ionic gel composite adsorbent[J]. Chemical Industry and Engineering Progress, 2022, 41(Sup1): 389 − 396. (in Chinese with English abstract)
[28] WANG Xuejiao,YANG Dongzhi,ZHANG Ming,et al. Super-hygroscopic calcium chloride/graphene oxide/poly (N-isopropylacrylamide) gels for spontaneous harvesting of atmospheric water and solar-driven water release[J]. ACS Applied Materials & Interfaces,2022,14(29):33881 − 33891.
[29] 黄健,黄志明,包永忠,等. 温敏性水凝胶的溶胀模型和仿真[J]. 浙江大学学报(工学版),2006,40(11):1918 − 1921. [HUANG Jian,HUANG Zhiming,BAO Yongzhong,et al. Modeling and simulation of swelling behavior of thermosensitive hydrogels[J]. Journal of Zhejiang University (Engineering Science),2006,40(11):1918 − 1921. (in Chinese with English abstract)] doi: 10.3785/j.issn.1008-973X.2006.11.017
HUANG Jian, HUANG Zhiming, BAO Yongzhong, et al. Modeling and simulation of swelling behavior of thermosensitive hydrogels[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(11): 1918 − 1921. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2006.11.017
[30] GRAEBER G,DÍAZ-MARÍN C D,GAUGLER L C,et al. Extreme water uptake of hygroscopic hydrogels through maximized swelling-induced salt loading[J]. Advanced Materials,2024,36(12):e2211783. doi: 10.1002/adma.202211783
[31] 包淑红,潘春跃,刘丹平. N-异丙基丙烯酰胺-丙烯酰胺热敏凝胶的溶胀特性[J]. 功能高分子学报,2004,17(3):447 − 451. [BAO Shuhong,PAN Chunyue,LIU Danping. Swelling properties of temperature sensitive P(NIPAm-Am) hydrogel[J]. Journal of Functional Polymers,2004,17(3):447 − 451. (in Chinese with English abstract)] doi: 10.3969/j.issn.1008-9357.2004.03.016
BAO Shuhong, PAN Chunyue, LIU Danping. Swelling properties of temperature sensitive P(NIPAm-Am) hydrogel[J]. Journal of Functional Polymers, 2004, 17(3): 447 − 451. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-9357.2004.03.016
[32] ZHOU Xingyi,ZHANG Panpan,ZHAO Fei,et al. Super moisture absorbent gels for sustainable agriculture via atmospheric water irrigation[J]. ACS Materials Letters,2020,2(11):1419 − 1422. doi: 10.1021/acsmaterialslett.0c00439
[33] 吴红,张慧,范黎,等. 温敏型聚(N-异丙基丙烯酰胺/丙烯酰胺)纳米凝胶的制备及其性质研究[J]. 解放军药学学报,2007,23(4):245 − 249. [WU Hong,ZHANG Hui,FAN Li,et al. Synthesis and properties of temperature-sensitive poly (N-isopropylacrylamide/acrylamide) nanogel[J]. Pharmaceutical Journal of Chinese People's Liberation Army,2007,23(4):245 − 249. (in Chinese with English abstract)] doi: 10.3969/j.issn.1008-9926.2007.04.002
WU Hong, ZHANG Hui, FAN Li, et al. Synthesis and properties of temperature-sensitive poly (N-isopropylacrylamide/acrylamide) nanogel[J]. Pharmaceutical Journal of Chinese People's Liberation Army, 2007, 23(4): 245 − 249. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-9926.2007.04.002
[34] 张先正,卓仁禧. 快速温度敏感聚(N-异丙基丙烯酰胺-co-丙烯酰胺)水凝胶的制备及性能研究[J]. 高等学校化学学报,2000,21(8):1309 − 1311. [ZHANG Xianzheng,ZHUO Renxi. Synthesis and properties of fast responsive,temperature sensitive P(NIPA-co-AA) hydrogel[J]. Chemical Journal of Chinese Universities,2000,21(8):1309 − 1311. (in Chinese with English abstract)] doi: 10.3321/j.issn:0251-0790.2000.08.027
ZHANG Xianzheng, ZHUO Renxi. Synthesis and properties of fast responsive, temperature sensitive P(NIPA-co-AA) hydrogel[J]. Chemical Journal of Chinese Universities, 2000, 21(8): 1309 − 1311. (in Chinese with English abstract) doi: 10.3321/j.issn:0251-0790.2000.08.027
[35] ZHAO Huizhong,WANG Zhaoyang,LI Qianwen,et al. Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2”[J]. Microporous and Mesoporous Materials,2020,299:110109. doi: 10.1016/j.micromeso.2020.110109
[36] ENTRZARI A,GE T S,WAMG R Z. Water adsorption on the coated aluminum sheets by composite materials (LiCl plus LiBr)/silica gel[J]. Energy,2018,160:64 − 71. doi: 10.1016/j.energy.2018.06.210
[37] 周丹,沈彦俊,陈亚宁,等. 西北干旱区荒漠植被生态需水量估算[J]. 生态学杂志,2015,34(3):670 − 680. [ZHOU Dan,SHEN Yanjun,CHEN Yaning,et al. Estimation of ecological water requirement of desert vegetation in the arid region of Northwest China[J]. Chinese Journal of Ecology,2015,34(3):670 − 680. (in Chinese with English abstract)]
ZHOU Dan, SHEN Yanjun, CHEN Yaning, et al. Estimation of ecological water requirement of desert vegetation in the arid region of Northwest China[J]. Chinese Journal of Ecology, 2015, 34(3): 670 − 680. (in Chinese with English abstract)
[38] 胡广录,赵文智. 干旱半干旱区植被生态需水量计算方法评述[J]. 生态学报,2008,28(12):6282 − 6291. [HU Guanglu,ZHAO Wenzhi. Reviews on calculating methods of vegetation ecological water requirement in arid and semiarid regions[J]. Acta Ecologica Sinica,2008,28(12):6282 − 6291. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-0933.2008.12.060
HU Guanglu, ZHAO Wenzhi. Reviews on calculating methods of vegetation ecological water requirement in arid and semiarid regions[J]. Acta Ecologica Sinica, 2008, 28(12): 6282 − 6291. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0933.2008.12.060
[39] 赵文智,程国栋. 干旱区生态水文过程研究若干问题评述[J]. 科学通报,2001,46(22):1851 − 1857. [ZHAO Wenzhi,CHENG Guodong. A review of several issues in the study of eco-hydrological processes in arid regions[J]. Chinese Science Bulletin,2001,46(22):1851 − 1857. (in Chinese with English abstract)] doi: 10.3321/j.issn:0023-074X.2001.22.002
ZHAO Wenzhi, CHENG Guodong. A review of several issues in the study of eco-hydrological processes in arid regions[J]. Chinese Science Bulletin, 2001, 46(22): 1851 − 1857. (in Chinese with English abstract) doi: 10.3321/j.issn:0023-074X.2001.22.002
[40] 张杨,冯文新,董宏炳,等. 高陡岩质边坡覆绿植物生态需水量计算[J]. 安全与环境工程,2019,26(6):23 − 28. [ZHANG Yang,FENG Wenxin,DONG Hongbing,et al. Calculation of ecological water demand of reforestation plants in high-steep rock slopes[J]. Safety and Environmental Engineering,2019,26(6):23 − 28. (in Chinese with English abstract)]
ZHANG Yang, FENG Wenxin, DONG Hongbing, et al. Calculation of ecological water demand of reforestation plants in high-steep rock slopes[J]. Safety and Environmental Engineering, 2019, 26(6): 23 − 28. (in Chinese with English abstract)
[41] 张阳阳,陈喜,高满,等. 内陆干旱区典型旱生植物蒸腾耗水量模拟研究[J]. 生态学报,2021,41(19):7751 − 7762. [ZHANG Yangyang,CHEN Xi,GAO Man,et al. Simulation of transpiration for typical xeromorphic plants in inland arid region of Northwestern China[J]. Acta Ecologica Sinica,2021,41(19):7751 − 7762. (in Chinese with English abstract)]
ZHANG Yangyang, CHEN Xi, GAO Man, et al. Simulation of transpiration for typical xeromorphic plants in inland arid region of Northwestern China[J]. Acta Ecologica Sinica, 2021, 41(19): 7751 − 7762. (in Chinese with English abstract)
[42] 马稚桐,王文科,赵明,等. 半干旱地区地表-地下水系统水热运移与裸土蒸发研究[J]. 水文地质工程地质,2021,48(4):7 − 14. [MA Zhitong,WANG Wenke,ZHAO Ming,et al. Hydrothermal transfer and bare soil evaporation in surface-groundwater systems in semi-arid areas[J]. Hydrogeology & Engineering Geology,2021,48(4):7 − 14. (in Chinese with English abstract)]
MA Zhitong, WANG Wenke, ZHAO Ming, et al. Hydrothermal transfer and bare soil evaporation in surface-groundwater systems in semi-arid areas[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 7 − 14. (in Chinese with English abstract)
-