中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于机器学习的滑坡崩塌地质灾害气象风险预警研究

李阳春, 刘黔云, 李潇, 顾天红, 张楠. 基于机器学习的滑坡崩塌地质灾害气象风险预警研究[J]. 中国地质灾害与防治学报, 2021, 32(3): 118-123. doi: 10.16031/j.cnki.issn.1003-8035.2021.00-15
引用本文: 李阳春, 刘黔云, 李潇, 顾天红, 张楠. 基于机器学习的滑坡崩塌地质灾害气象风险预警研究[J]. 中国地质灾害与防治学报, 2021, 32(3): 118-123. doi: 10.16031/j.cnki.issn.1003-8035.2021.00-15
LI Yangchun, LIU Qianyun, LI Xiao, GU Tianhong, ZHANG Nan. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 118-123. doi: 10.16031/j.cnki.issn.1003-8035.2021.00-15
Citation: LI Yangchun, LIU Qianyun, LI Xiao, GU Tianhong, ZHANG Nan. Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 118-123. doi: 10.16031/j.cnki.issn.1003-8035.2021.00-15

基于机器学习的滑坡崩塌地质灾害气象风险预警研究

详细信息
    作者简介: 李阳春(1983-),男,湖北武汉人,硕士,高级工程师,研究方向为地质灾害综合防治。E-mail:82066240@qq.com
    通讯作者: 张 楠(1987-),男,重庆綦江人,本科,高级工程师,研究方向为地质灾害气象风险预警。E-mail:675400947@qq.com
  • 中图分类号: TP694

Exploring early warning and forecasting of meteorological risk of landslide and rockfall induced by meteorological factors by the approach of machine learning

More Information
  • 在划分气象风险等级时,传统地质灾害气象风险预警方法忽略了承灾体脆弱性因素,且气象风险预报等级整体偏高,导致高等级风险区空报率较高。基于此,提出基于机器学习的滑坡、崩塌灾害气象风险预警方法。利用信息量法,分析气象因素影响程度。选取坐标点、降雨量、易发生等级,将其作为机器学习人工神经网络的输入节点,判断是否发生崩塌、滑坡灾害;针对地质灾害区域,根据影响程度计算气象引发因子指数,结合滑坡、崩塌灾害潜势度G和承灾体脆弱性M,确定气象风险预警指数R,划分预警级别,完成滑坡、崩塌灾害气象风险预警。实验结果表明,设计方法有效降低了三级预报和四级预警空报率,提升了预警精细化程度。

  • 加载中
  • 图 1  贵州省地质灾害易发区分布示意图

    Figure 1. 

    图 2  滑坡、崩塌灾害机器学习神经网络结构

    Figure 2. 

    图 3  贵州省降水量变化

    Figure 3. 

    图 4  崩塌预警结果

    Figure 4. 

    图 5  滑坡预警结果

    Figure 5. 

    表 1  滑坡、崩塌灾害高易发区气象风险预警级别

    Table 1.  Early warning level of meteorological risk in high areas prone to geological disasters

    累积降水
    /mm
    预报小雨
    0.01~10
    预报中雨
    10~25
    预报大雨
    25~50
    预报暴雨
    50~100
    预报大暴雨
    ≥100
    ≤30 蓝色黄色橙色红色
    30~50蓝色黄色橙色红色红色
    50~100黄色橙色红色红色红色
    ≥100橙色红色红色红色红色
    下载: 导出CSV

    表 2  滑坡、崩塌灾害中易发区气象风险预警级别

    Table 2.  Warning level of meteorological risk in areas prone to geological disasters

    累积降水
    /mm
    预报小雨
    0.01~10
    预报中雨
    10~25
    预报大雨
    25~50
    预报暴雨
    50~100
    预报大暴雨
    ≥100
    ≤30 蓝色黄色橙色
    30~50蓝色黄色橙色红色
    50~100蓝色黄色橙色红色红色
    ≥100黄色橙色红色红色红色
    下载: 导出CSV

    表 3  滑坡、崩塌灾害低易发区气象风险预警级别

    Table 3.  Early warning level of meteorological risk in low areas prone to geological disasters

    累积降水
    /mm
    预报小雨
    0.01~10
    预报中雨
    10~25
    预报大雨
    25~50
    预报暴雨
    50~100
    预报大暴雨
    ≥100
    ≤30 蓝色黄色
    30~50蓝色黄色橙色
    50~100蓝色黄色橙色红色
    ≥100蓝色黄色橙色红色红色
      注:其中预报降水为24 h预报降雨量,累积降水为最近五天累计降雨量。
    下载: 导出CSV

    表 4  贵州省当日临界雨量和5日临界雨量

    Table 4.  Critical rainfall and mm rainfall of 5 th Day of Guizhou Province

    灾害易发区域一级二级三级四级
    当日临界雨量
    /m
    不易发区92553728
    低易发区110674534
    中易发区132795340
    高易发区25415110176
    5日临界雨量
    /m
    不易发区2231338967
    低易发区24315710377
    中易发区26215710579
    高易发区30418112191
    下载: 导出CSV

    表 5  贵州省典型地质灾害统计数据

    Table 5.  Statistical data of typical geological disasters in Guizhou Province

    灾害点类型灾害点数量/个分布市镇数量/个占灾害点总数比例/%
    滑坡10325885.7%
    崩塌111199.2%
    泥石流29122.4%
    地面塌陷2582.1%
    地裂缝730.5%
    下载: 导出CSV

    表 6  崩塌预警空报率

    Table 6.  Empty reporting rate of collapse early warning and forecast

    设计方法常规方法1常规方法2
    一级预报/%000
    二级预报/%000
    三级预报/%8.2714.9217.92
    四级预警/%7.2613.2919.26
    下载: 导出CSV

    表 7  滑坡预警空报率

    Table 7.  Empty reporting rate of landslide early warning and forecast

    设计方法常规方法1常规方法2
    一级预报/%000
    二级预报/%001.21
    三级预报/%9.9214.9616.92
    四级预警/%6.1214.6317.29
    下载: 导出CSV
  • [1]

    申欣凯, 吕义清, 张静, 等. 基于ArcGIS的山西省暴雨灾害风险评估[J]. 国土资源科技管理,2020,37(1):61 − 73. [SHEN Xinkai, LYU Yiqing, ZHANG Jing, et al. Risk assessment of rainstorm disaster in Shanxi Province based on ArcGIS[J]. Scientific and Technological Management of Land and Resources,2020,37(1):61 − 73. (in Chinese with English abstract)

    [2]

    罗贵东, 于竹娟, 张驹. 基于概率分布的达州市地质灾害发生频次与降水量级的关系[J]. 成都信息工程大学学报,2020,35(6):697 − 703. [LUO Guidong, YU Zujuan, ZHANG Ju. The relationship between the frequency of geological disasters and the precipitation in Dazhou based on probability distribution[J]. Journal of Chengdu University of Information Technology,2020,35(6):697 − 703. (in Chinese with English abstract)

    [3]

    李宇梅, 杨寅, 狄靖月, 等. 全国地质灾害气象风险精细化网格预报方法及其应用[J]. 气象,2020,46(10):1310 − 1319. [LI Yumei, YANG Yin, DI Jingyue, et al. Meteorological risk assessment method of geological disaster in China and its mesh refinement application[J]. Meteorological Monthly,2020,46(10):1310 − 1319. (in Chinese with English abstract) doi: 10.7519/j.issn.1000-0526.2020.10.005

    [4]

    兰腾达. 宁德市地质灾害气象风险预警系统应用与展望[J]. 福建地质,2020,39(2):155 − 160. [LAN Tengda. Application and prospect of early warning of meteorological risk system for geological hazards, Ningde City[J]. Geology of Fujian,2020,39(2):155 − 160. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3970.2020.02.008

    [5]

    薛俊卓, 詹辉, 张国良, 等. 长输油气管道河沟段水毁灾害气象风险评价研究[J]. 安全与环境工程,2020,27(2):168 − 174. [XUE Junzhuo, ZHAN Hui, ZHANG Guoliang, et al. Meteorological risk assessment of river channel washout disaster of long-distance oil and gas pipelines[J]. Safety and Environmental Engineering,2020,27(2):168 − 174. (in Chinese with English abstract)

    [6]

    黎力, 朱永亮, 陈亮, 等. 重庆市地质灾害气象风险预警问题研究[J]. 安徽农业科学,2019,47(24):234 − 236. [LI Li, ZHU Yongliang, CHEN Liang, et al. Study on geological hazard meteorological risk early warning in Chongqing[J]. Journal of Anhui Agricultural Sciences,2019,47(24):234 − 236. (in Chinese with English abstract) doi: 10.3969/j.issn.0517-6611.2019.24.069

    [7]

    罗鸿东, 李瑞冬, 张勃, 等. 基于信息量法的地质灾害气象风险预警模型:以甘肃省陇南地区为例[J]. 地学前缘,2019,26(6):289 − 297. [LUO Hongdong, LI Ruidong, ZHANG Bo, et al. An early warning model system for predicting meteorological risk associated with geological disasters in the Longnan area, Gansu Province based on the information value method[J]. Earth Science Frontiers,2019,26(6):289 − 297. (in Chinese with English abstract)

    [8]

    杨竹云, 李华宏, 胡娟, 等. 昭通市地质灾害特征及气象风险预警模型研究[J]. 云南大学学报(自然科学版),2019,41(4):753 − 764. [YANG Zuyun, LI Huahong, HU Juan, et al. Research on features of geological hazard and meteorological risk early-warning model in Zhaotong[J]. Journal of Yunnan University(Natural Sciences Edition),2019,41(4):753 − 764. (in Chinese with English abstract)

    [9]

    方然可, 刘艳辉, 苏永超, 等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)

    [10]

    杨寅, 包红军, 彭涛. 台风“鲇鱼”强降水引发的地质灾害气象风险预警检验与分析[J]. 暴雨灾害,2019,38(3):221 − 228. [YANG Yin, BAO Hongjun, PENG Tao. Verification and analysis of meteorological early warning of geological hazards during precipitation of Typhoon "MEGI"[J]. Torrential Rain and Disasters,2019,38(3):221 − 228. (in Chinese with English abstract)

    [11]

    包红军, 曹勇, 林建, 等. 山洪灾害气象预警业务技术进展[J]. 中国防汛抗旱,2020,30(1):40 − 47. [BAO Hongjun, CAO Yong, LIN Jian, et al. Operational technology advances in meteorological early warning for flash flood disasters[J]. China Flood & Drought Management,2020,30(1):40 − 47. (in Chinese with English abstract)

    [12]

    方楠, 黄清瀚, 丁雨鑫, 等. 浙江省近3 a气象类灾害预警信息特征[J]. 浙江农业科学,2020,61(6):1246 − 1250. [FANG Nan, HUANG Qinghan, DING Yuxin, et al. The characteristics of meteorological disaster early warning information in Zhejiang Province in recent 3 years[J]. Journal of Zhejiang Agricultural Sciences,2020,61(6):1246 − 1250. (in Chinese with English abstract)

    [13]

    高树静, 董廷坤, 王程龙. 基于机器学习的车道线检测系统仿真与优化[J]. 计算机仿真,2020,37(2):140 − 143. [GAO Shujing, DONG Tingkun, WANG Chenglong. Simulation and optimization of lane detection system based on machine learning[J]. Computer Simulation,2020,37(2):140 − 143. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-9348.2020.02.029

    [14]

    李爽爽. 精细化暴雨监测预报及风险预警系统的开发与应用[J]. 浙江气象,2020,41(3):29 − 35. [LI Shuangshuang. Development and application of refined rainstorm monitoring and forecasting and risk early warning system[J]. Journal of Zhejiang Meteorology,2020,41(3):29 − 35. (in Chinese with English abstract)

    [15]

    刘云, 康卉君. 江西崩塌滑坡泥石流灾害空间时间分布特征分析[J]. 中国地质灾害与防治学报,2020,31(4):107 − 112. [LIU Yun, KANG Huijun. Spatial-temporal distribution of landslide, rockfall and debris flow hazards in Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):107 − 112. (in Chinese with English abstract)

    [16]

    程素珍, 路璐, 翟淑花, 等. 2004—2018年北京市突发地质灾害时空分布特点和监测预警状况[J]. 中国地质灾害与防治学报,2020,31(6):38 − 46. [CHENG Suzhen, LU Lu, ZHAI Shuhua, et al. Temporal-spatial distribution and monitoring and early warning of sudden geological disasters in Beijing during the period of 2004 to 2018[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):38 − 46. (in Chinese with English abstract)

    [17]

    李滨, 殷跃平, 高杨, 等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,27(4):5 − 13. [LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,27(4):5 − 13. (in Chinese with English abstract)

  • 加载中

(5)

(7)

计量
  • 文章访问数:  3987
  • PDF下载数:  567
  • 施引文献:  0
出版历程
收稿日期:  2021-03-29
修回日期:  2021-05-25
刊出日期:  2021-06-25

目录