中国地质环境监测院
中国地质灾害防治工程行业协会
主办

采煤区地表拉张裂缝演化及其控制因素物理模拟试验

黄河, 冯宇, 严家平, 鲁海峰, 刘伟, 郭宝伟, 尚相春. 采煤区地表拉张裂缝演化及其控制因素物理模拟试验[J]. 中国地质灾害与防治学报, 2021, 32(4): 93-98. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-12
引用本文: 黄河, 冯宇, 严家平, 鲁海峰, 刘伟, 郭宝伟, 尚相春. 采煤区地表拉张裂缝演化及其控制因素物理模拟试验[J]. 中国地质灾害与防治学报, 2021, 32(4): 93-98. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-12
HUANG He, FENG Yu, YAN Jiaping, LU Haifeng, LIU Wei, GUO Baowei, SHANG Xiangchun. Physical model experiment on formation of surface tension fractures and their controlling factors in a coal mining area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 93-98. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-12
Citation: HUANG He, FENG Yu, YAN Jiaping, LU Haifeng, LIU Wei, GUO Baowei, SHANG Xiangchun. Physical model experiment on formation of surface tension fractures and their controlling factors in a coal mining area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 93-98. doi: 10.16031/j.cnki.issn.1003-8035.2021.04-12

采煤区地表拉张裂缝演化及其控制因素物理模拟试验

  • 基金项目: 国家自然科学基金项目(41977253)
详细信息
    作者简介: 黄 河(1976-),男,安徽固镇人,博士,副教授,研究方向为地质灾害防治。E-mail:1550826493@qq.com
  • 中图分类号: P694

Physical model experiment on formation of surface tension fractures and their controlling factors in a coal mining area

  • 基于自制装置室内模拟试验和现场试验,研究了黏土体含水量变化及应力环境改变对采煤区地表拉张裂隙发育的影响,研究结果表明:在30%、35%、40%三种含水量情况下,随着黏土体含水量增高,土样表面拉张裂隙发育宽度和深度均明显降低,且拉张裂隙发育呈现时间上的滞后;当含水量增至40%时,土样表面不会产生拉张裂隙;在土样表面人为形成应力薄弱区,可以有效改变拉张裂隙发育位置;在孙疃煤矿1047工作面通过增湿试验地表“切眼裂隙”发育得到有效抑制;应力引导对地表“风机裂隙”的发育方向造成一定影响。

  • 加载中
  • 图 1  试验装置示意图

    Figure 1. 

    图 2  含水量为30%的土样表面裂隙发育情况

    Figure 2. 

    图 3  含水量为35%的土样表面裂隙发育情况

    Figure 3. 

    图 4  含水量为35%添加划痕的土样表面裂隙发育情况

    Figure 4. 

    图 5  现场试验地块位置示意图

    Figure 5. 

    表 1  室内试验与现场试验黏土基本性质对比

    Table 1.  Comparison of clay properties between laboratory test and field test

    黏土类别土粒比重
    Gs
    塑限
    Wp/%
    液限
    WL/%
    塑性指数
    Ip
    自由膨胀率
    δ/%
    室内试验用土2.7423.441.518.148
    现场地表黏土2.7423.241.418.246
      注:表中数据为现场与室内土样测试后的平均值。
    下载: 导出CSV

    表 2  不同试验地段拉张裂隙发育情况对比

    Table 2.  Comparison of tensile fractures development in different testing sections

    地段拉张裂隙数量/条拉张裂隙宽度/mm
    增湿地段12
    未增湿地段34~11
    下载: 导出CSV
  • [1]

    许家林, 钱鸣高, 朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报,2005,24(5):787 − 791. [XU Jialin, QIAN Minggao, ZHU Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(5):787 − 791. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.05.009

    [2]

    吴玉涛, 杨为民, 周俊杰, 等. 河北隆尧地裂缝灾害及其安全避让距离分析[J]. 中国地质灾害与防治学报,2020,31(2):67 − 73. [WU Yutao, YANG Weimin, ZHOU Junjie, et al. Study on Longyao ground fissure disaster and safety avoidance distance[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):67 − 73. (in Chinese with English abstract)

    [3]

    刘辉, 何春桂, 邓喀中, 等. 开采引起地表塌陷型裂缝的形成机理分析[J]. 采矿与安全工程学报,2013,30(3):380 − 384. [LIU Hui, HE Chungui, DENG Kazhong, et al. Analysis of forming mechanism of collapsing ground fissure caused by mining[J]. Journal of Mining & Safety Engineering,2013,30(3):380 − 384. (in Chinese with English abstract)

    [4]

    王景明, 王江帅, 刘金峰, 等. 地裂缝及其灾害的理论与应用[M]. 西安: 陕西科学技术出版社, 2000.

    WANG Jingming, WANG Jiangshuai, LIU Jinfeng, et al. Theory of ground fissures hazards and its application[M]. Xi'an: Shaanxi Science & Technology Press, 2000.(in Chinese)

    [5]

    于文才, 杨亚磊, 卢全中, 等. 不同活动速率下隐伏地裂缝的模型试验研究[J]. 中国地质灾害与防治学报,2019,30(2):98 − 105. [YU Wencai, YANG Yalei, LU Quanzhong, et al. Comparative study on physical model test of concealed ground fissure rupture propagation under different activity rates[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):98 − 105. (in Chinese with English abstract)

    [6]

    范钢伟, 张东升, 马立强. 神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J]. 中国矿业大学学报,2011,40(2):196 − 201. [FAN Gangwei, ZHANG Dongsheng, MA Liqiang. Overburden movement and fracture distribution induced by longwall mining of the shallow coal seam in the Shendong coalfield[J]. Journal of China University of Mining & Technology,2011,40(2):196 − 201. (in Chinese with English abstract)

    [7]

    周长松, 邹胜章, 夏日元, 等. 太原盆地地裂缝发育规律及防控措施[J]. 煤田地质与勘探,2016,44(2):73 − 78. [ZHOU Changsong, ZOU Shengzhang, XIA Riyuan, et al. Development regularity and control measures of ground fissures in Taiyuan basin[J]. Coal Geology & Exploration,2016,44(2):73 − 78. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1986.2016.02.014

    [8]

    何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M].徐州: 中国矿业大学出版社, 2003.

    HE Guoqing, YANG Lun, LING Gengdi, et al. Mining subsidence[M].Xuzhou: China University of Mining and Technology Press, 2003. (in Chinese)

    [9]

    胡振琪, 王新静, 贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报,2014,39(1):11 − 18. [HU Zhenqi, WANG Xinjing, HE Anmin. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region[J]. Journal of China Coal Society,2014,39(1):11 − 18. (in Chinese with English abstract)

    [10]

    范立民, 马雄德, 李永红, 等. 西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报,2017,42(2):276 − 285. [FAN Limin, MA Xiongde, LI Yonghong, et al. Geological disasters and control technology in high intensity mining area of western China[J]. Journal of China Coal Society,2017,42(2):276 − 285. (in Chinese with English abstract)

    [11]

    胡青峰, 崔希民, 袁德宝, 等. 厚煤层开采地表裂缝形成机理与危害性分析[J]. 采矿与安全工程学报,2012,29(6):864 − 869. [HU Qingfeng, CUI Ximin, YUAN Debao, et al. Formation mechanism of surface cracks caused by thick seam mining and hazard analysis[J]. Journal of Mining & Safety Engineering,2012,29(6):864 − 869. (in Chinese with English abstract)

    [12]

    毕银丽, 邹慧, 彭超, 等. 采煤沉陷对沙地土壤水分运移的影响[J]. 煤炭学报,2014,39(增刊2):490 − 496. [BI Yinli, ZOU Hui, PENG Chao, et al. Effects of mining subsidence on soil water movement in sandy area[J]. Journal of China Coal Society,2014,39(Sup2):490 − 496. (in Chinese with English abstract)

    [13]

    王锐, 马守臣, 张合兵, 等. 干旱区高强度开采地表裂缝对土壤微生物学特性和植物群落的影响[J]. 环境科学研究,2016,29(9):1249 − 1255. [WANG Rui, MA Shouchen, ZHANG Hebing, et al. Effects of surface cracks caused by high intensity coal mining on soil microbial characteristics and plant communities in arid regions[J]. Research of Environmental Sciences,2016,29(9):1249 − 1255. (in Chinese with English abstract)

    [14]

    刘辉, 雷少刚, 邓喀中, 等. 超高水材料地裂缝充填治理技术[J]. 煤炭学报,2014,39(1):72 − 77. [LIU Hui, LEI Shaogang, DENG Kazhong, et al. Research on ground fissure treatment filling with super-high-water material[J]. Journal of China Coal Society,2014,39(1):72 − 77. (in Chinese with English abstract)

    [15]

    邓洪亮, 王正念, 廖丹. 山西伯方煤矿地面裂缝特征和治理措施[J]. 中国煤炭地质,2008,20(11):38 − 40. [DENG Hongliang, WANG Zhengnian, LIAO Dan. Ground fissure characters and harnessing measures in bofang coalmine, Shanxi[J]. Coal Geology of China,2008,20(11):38 − 40. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2008.11.012

    [16]

    田中英, 孙渊, 唐小平, 等. 地球物理多方法勘探在西安地裂缝探测中的应用[J]. 工程地球物理学报,2018,15(1):92 − 97. [TIAN Zhongying, SUN Yuan, TANG Xiaoping, et al. The application of multi-method geophysical exploration to the detection of ground fissure in Xi'an area[J]. Chinese Journal of Engineering Geophysics,2018,15(1):92 − 97. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-7940.2018.01.014

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1098
  • PDF下载数:  155
  • 施引文献:  0
出版历程
收稿日期:  2020-07-22
修回日期:  2020-08-06
刊出日期:  2021-08-25

目录