Research progress on the in-situ monitoring technologies of marine geohazards
-
摘要:
海洋地质灾害对沿海城市人口和海洋经济发展构成重大威胁。海岸港口航道、海底管线光缆、海洋平台基础等工程建设规模的扩大,意味着海洋地质灾害风险进一步提高。海底火山爆发、海啸等大规模但不常见的灾害事件吸引了大多数公众关注和媒体报道,并促使政策调整以防范化解灾害风险。然而,海底气体喷溢、海底滑坡等小规模但更频繁的原生灾害事件,会产生严重的局部影响,并且极易转变为灾害链导致灾害事件恶化,但社会公众在很大程度上没有足够重视此类灾害风险。迄今为止,大多数海洋地质灾害的特征都可以被探测识别,但依靠现有的技术却很难有效监测。海洋地质灾害的原位监测需要更加严苛的技术能力,特别是突发性海洋地质灾害的原位监测难度较大。综述首先介绍了海洋地质灾害原位监测的意义以及技术发展的挑战,然后对海洋地质灾害的监测要素进行总结探讨,重点阐述海洋地质灾害监测技术装备的应用情况,并对海洋地质灾害的风险评估和灾害预警进行分析探讨,最后对海洋地质灾害原位监测技术及其应用作了总结和展望。综述旨在分析总结海洋地质灾害类型的监测技术装备及其应用中涉及的一些核心技术和急需解决的关键问题,以期为该项技术发展和应用提供借鉴。
Abstract:Marine geohazards pose a major threat to the population and marine economic development of coastal cities. The expansion of construction of coastal port channels, submarine pipelines, optical cables, and marine platform foundations means that the risk of marine geohazards has further increased. Large-scale but uncommon disaster events such as submarine volcanic eruptions and tsunamis have attracted most of the public attention and media coverage and prompted policy adjustments to prevent and resolve disaster risks. However, small-scale but more frequent primary hazard events such as submarine gas leakages and submarine landslides, which can have severe localized impacts and are highly susceptible to transformation into hazard chains leading to worsening hazard events, are largely underappreciated by the public. To date, most features of marine geohazards can be detected and identified, but it is difficult to monitor effectively with existing technologies. In-situ monitoring of marine geohazards requires more demanding technical capabilities, especially in-situ monitoring of sudden-onset marine geohazards. The review first introduces the significance of in-situ monitoring of marine geohazards and the challenges of technology development, then summarizes and discusses the monitoring elements of marine geohazards, focuses on the application of marine geohazards monitoring technology and equipment, and analyzes and discusses the risk assessment and early warning of marine geohazards. Finally, summarizes outlooks on the marine geohazards in-situ monitoring technology and its application. The review aims to analyze and summarize some core technologies and key issues that need to be solved urgently in the monitoring technology and equipment of marine geohazards and their applications, in order to provide reference for the development and application of this technology.
-
-
图 1 海底地形地貌及典型海洋地质灾害[2]
Figure 1.
图 6 中国海洋大学海底变形滑动原位实时自动观测装备[46]
Figure 6.
表 1 海洋地质灾害的原位监测要素及监测技术
Table 1. Main in-situ monitoring elements and monitoring technology of marine geohazard
监测要素 监测内容 监测技术 监测指标 致灾因素 内动力地质作用(地震作用、构造运动、
岩浆作用等)海底地震仪OBS、海底热流探针等 记录天然地震事件和人工地震勘探、
温度梯度和热导系数等外动力地质作用(流体动力作用、大气
动力作用、沉积动力作用等)声学多普勒流速仪、波潮仪、大气遥感探测、气象卫星探测等 流速、流向、波浪、潮汐、大气风暴等 内部应力 孔隙压力、温度 孔隙压力探针、温度传感器等 孔隙压力、温度 外部变形 垂向变形 压力传感器、加速度传感器、倾角计等 变形量、变形速率、加速度、倾角等 侧向变形 压力传感器、加速度传感器、倾角计、声学应答器、光纤应变传感器等 变形量、变形速率、加速度、倾角等 地形地貌 数字图像声呐、电阻率探针、自然电位探针、压力传感器等 海床侵蚀淤积量、地形地貌变化等 灾前征兆 内部应力、外部变形等灾前征兆信息 内部应力及外部变形等要素的相关监测技术 孔隙压力累积、外部变形加速等灾前
异常征兆信息 -
[1] HUGO G. Future demographic change and its interactions with migration and climate change[J]. Global Environmental Change,2011,21:S21 − S33. doi: 10.1016/j.gloenvcha.2011.09.008
[2] CAMARGO J, SILVA M, FERREIRA A J, et al. Marine geohazards: A bibliometric-based review[J]. Geosciences,2019,9(2):1 − 37.
[3] OECD. The Ocean Economy in 2030[M]. Paris: OECD Publishing, 2016.
[4] ZANIBONI F, ARMIGLIATO A, ELSEN K, et al. The 1977 Gioia Tauro Harbour (South Tyrrhenian Sea, Italy) Landslide-Tsunami: Numerical Simulation[C]//SASSA K, CANUTI P, YIN Y P. Landslide Science for a Safer Geoenvironment. Switzerland: Springer International Publishing, 2014: 589-594.
[5] ASSIER-RZADKIEAICZ S, HEINRICH P, SABATIER P C, et al. Numerical modelling of a landslide-generated tsunami: the 1979 nice event[J]. Pure and Applied Geophysics,2000,157(10):1707 − 1727. doi: 10.1007/PL00001057
[6] SAHAL A, LEMAHIEU A. The 1979 nice airport tsunami: mapping of the flood in Antibes[J]. Natural Hazards,2011,56(3):833 − 840. doi: 10.1007/s11069-010-9594-6
[7] NOTTINGHAM P. Review of the 1994 Skagway, Akaska tsunami and future plans[J]. Science of Tsunami Hazards,2002,20(1):42 − 49.
[8] MENKE W, ABEND H, BACH D, et al. Review of the source characteristics of the Great Sumatra–Andaman Islands earthquake of 2004[J]. Surveys in Geophysics,2006,27(6):603 − 613. doi: 10.1007/s10712-006-9013-4
[9] SULTAN N, CATTANEO A, SIBUET J C, et al. Deep sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake[J]. International Journal of Earth Sciences,2009,98(4):823 − 837. doi: 10.1007/s00531-008-0334-z
[10] MAHANEY W C, DOHM J M. The 2011 Japanese 9.0 magnitude earthquake: Test of a kinetic energy wave model using coastal configuration and offshore gradient of Earth and beyond[J]. Sedimentary Geology,2011,239(1/2):80 − 86.
[11] NORIO O, YE T, KAJITANI Y, et al. The 2011 eastern Japan great earthquake disaster: Overview and comments[J]. International Journal of Disaster Risk Science,2011,2(1):34 − 42. doi: 10.1007/s13753-011-0004-9
[12] FRITZ H M, PHILLIPS D A, OKAYASU A, et al. The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR[J]. Geophysical Research Letters,2012,39(7):1 − 6.
[13] 王淼, 马迎晨, 陈洋. 汤加火山喷发搅动半个地球[N]. 北京: 环球时报, 2022
WANG Miao, MA Yingcheng, CHEN Yang. Tonga's volcanic eruption stirs half the world[N]. Beijing: Global Times, 2022. (in Chinese)
[14] CRED, UNISDR. Economic Losses, Poverty & Disasters: 1998-2017[R]. Belgium: CRED&UNISDR Publishing, 2018.
[15] MIZUTORI M, GUHA-SAPIR D. Human cost of disasters: An overview of the last 20 years 2000—2019[R]. Belgium: CRED&UNDRR Publishing, 2020.
[16] ERCILLA G, CASAS D, ALONSO B, et al. Offshore geological hazards: charting the course of progress and future directions[J]. Oceans,2021,2(2):393 − 428. doi: 10.3390/oceans2020023
[17] KOPP H, CHIOCCI F L, BERNDT C, et al. Marine geohazards: Safeguarding society and the blue economy from a hidden threat[R]. Belgium: European Marine Board Publishing, 2021.
[18] POUDEROUX H, LAMARCHE G, PROUST J N. Building an 18000-year-long paleo-earthquake record from detailed deep-sea turbidite characterisation in Poverty Bay, New Zealand[J]. Natural Hazards and Earth System Sciences,2012,12(6):2077 − 2101. doi: 10.5194/nhess-12-2077-2012
[19] POLONIA A, VAIANI S C, DE LANGE G J. Did the A. D. 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea?[J]. Geology,2016,44(3):191 − 194. doi: 10.1130/G37486.1
[20] IKEHARA K, KANAMATSU T, NAGAHASHI Y, et al. Documenting large earthquakes similar to the 2011 Tohoku-Oki earthquake from sediments deposited in the Japan Trench over the past 1500 years[J]. Earth and Planetary Science Letters,2016,445:48 − 56. doi: 10.1016/j.jpgl.2016.04.009
[21] GOLDFINGER C, GALER S, BEESON J, et al. The importance of site selection, sediment supply, and hydrodynamics: A case study of submarine paleoseismology on the northern Cascadia margin, Washington USA[J]. Marine Geology,2017,384:4 − 46. doi: 10.1016/j.margeo.2016.06.008
[22] ARMIJO R, PONDARD N, MEYER B, et al. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in Istanbul[J]. Geochemistry, Geophysics, Geosystems,2005,6(6):1 − 29.
[23] GASPERINI L, POLONIA A, ÇAĞATAY M N, et al. Geological slip rates along the North Anatolian Fault in the Marmara region[J]. Tectonics,2011,30(TC6001):1 − 14.
[24] ÇAĞATAY M N, EREL L, BELLUCCI L G, et al. Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey[J]. Sedimentary Geology,2012,282:347 − 359. doi: 10.1016/j.sedgeo.2012.10.001
[25] YAKUPOĞLU N, UÇARKUŞ G, ERIŞ K K, et al. Sedimentological and geochemical evidence for seismoturbidite generation in the Kumburgaz Basin, Sea of Marmara: Implications for earthquake recurrence along the Central High Segment of the North Anatolian Fault[J]. Sedimentary Geology,2019,380:31 − 44. doi: 10.1016/j.sedgeo.2018.11.002
[26] KELLER J, RYAN W B F, NINKOVICH D, et al. Explosive volcanic activity in the Mediterranean over the past 200, 000 yr as recorded in deep-sea sediments[J]. Geological Society of America Bulletin,1978,89(4):591 − 604. doi: 10.1130/0016-7606(1978)89<591:EVAITM>2.0.CO;2
[27] WULF S, KRAML M, KELLER J. Towards a detailed distal tephrostratigraphy in the Central Mediterranean: The last 20, 000 yrs record of Lago Grande di Monticchio[J]. Journal of Volcanology and Geothermal Research,2008,177(1):118 − 132. doi: 10.1016/j.jvolgeores.2007.10.009
[28] NOMIKOU P, PAPANIKOLAOU D, ALEXANDRI M, et al. Submarine volcanoes along the Aegean volcanic arc[J]. Tectonophysics,2013,597/598:123 − 146. doi: 10.1016/j.tecto.2012.10.001
[29] 冯志强, 刘宗惠, 柯胜边. 南海北部地质灾害类型及分布规律[J]. 中国地质灾害与防治学报, 1994, 5(增刊1): 171 − 180
FENG Zhiqiang, LIU Zonghui, KE Shengbian. The type, character and distribution law of geological hazard in the north Nanhai Sea[J]. The Chinese Journal of Geological Hazard and Control, 1994, 5(Sup 1): 171 − 180. (in Chinese with English abstract)
[30] 王运兴, 梁收运. 突发性地质灾害研究现状[J]. 世界科技研究与发展,2012,34(1):84 − 88. [WANG Yunxing, LIANG Shouyun. Review of abrupt geological disasters[J]. World Sci-Tech R$D,2012,34(1):84 − 88. (in Chinese with English abstract)
WANG Yunxing, LIANG Shouyun. Review of abrupt geological disasters[J]. World Sci-Tech R$D, 2012, 34(1): 84-88. (in Chinese with English abstract)
[31] 洪海粟, 周建钰. 海洋地质灾害的类型、特征与研究趋势[J]. 海洋地质动态,1998,14(7):1 − 4. [WANG Haisu, ZHOU Jianyu. Types, characteristics and research trends of marine geohazards[J]. Marine Geology Frontiers,1998,14(7):1 − 4. (in Chinese)
WANG Haisu, ZHOU Jianyu. Types, characteristics and research trends of marine geohazards[J]. Marine Geology Frontiers, 1998, 14(7): 1-4. (in Chinese)
[32] 叶银灿. 海洋灾害地质学发展的历史回顾及前景展望[J]. 海洋学研究,2011,29(4):1 − 7. [YE Yincan. Review of the development of marine hazard geology and its future prospects[J]. Journal of Marine Sciences,2011,29(4):1 − 7. (in Chinese with English abstract)
YE Yincan. Review of the development of marine hazard geology and its future prospects[J]. Journal of Marine Sciences, 2011, 29(4): 1-7. (in Chinese with English abstract)
[33] 赵广涛, 谭肖杰, 李德平. 海洋地质灾害研究进展[J]. 海洋湖沼通报,2011(1):159 − 164. [ZHAO Guangtao, TAN Xiaojie, LI Deping. Research and advances in marine geo-hazards[J]. Transactions of Oceanology and Limnology,2011(1):159 − 164. (in Chinese with English abstract)
ZHAO Guangtao, TAN Xiaojie, LI Deping. Research and advances in marine geo-hazards[J]. Transactions of Oceanology and Limnology, 2011(1): 159-164. (in Chinese with English abstract)
[34] 韩金良, 吴树仁, 汪华斌. 地质灾害链[J]. 地学前缘,2007,14(6):11 − 23. [HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers,2007,14(6):11 − 23. (in Chinese with English abstract) doi: 10.1016/S1872-5791(08)60001-9
HAN Jinliang, WU Shuren, WANG Huabin. Preliminary study on geological hazard chains[J]. Earth Science Frontiers, 2007, 14(6): 11-23. (in Chinese with English abstract) doi: 10.1016/S1872-5791(08)60001-9
[35] 朱兴华, 彭建兵, 同霄, 等. 黄土地区地质灾害链研究初探[J]. 工程地质学报,2017,25(1):117 − 122. [ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Preliminary research on geological disaster chains in loess area[J]. Journal of Engineering Geology,2017,25(1):117 − 122. (in Chinese with English abstract)
ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Preliminary research on geological disaster chains in loess area[J]. Journal of Engineering Geology, 2017, 25(1): 117-122. (in Chinese with English abstract)
[36] TAPPIN D R. Tsunamis from submarine landslides[J]. Geology Today,2017,33(5):190 − 200. doi: 10.1111/gto.12200
[37] PINO N A, PIATANESI A, VALENSISE G, et al. The 28 December 1908 Messina Straits earthquake (MW 7.1): A great earthquake throughout a century of seismology[J]. Seismological Research Letters,2009,80(2):243 − 259. doi: 10.1785/gssrl.80.2.243
[38] HASEGAWA A, OHIRA T, MAEDA M, et al. Emergency responses and health consequences after the Fukushima accident; evacuation and relocation[J]. Clinical Oncology,2016,28(4):237 − 244. doi: 10.1016/j.clon.2016.01.002
[39] LIPSCY P Y, KUSHIDA K E, INCERTI T. The Fukushima disaster and Japan's nuclear plant vulnerability in comparative perspective[J]. Environmental Science & Technology,2013,47(12):6082 − 6088.
[40] COLANTONI P, GENNESSEAUX M, VANNEY J R, et al. Dynamic processes of a submarine canyon of Gioia Tauro, Tyrrhenian Sea[J]. Giornale Di Geologia,1992,54(2):199 − 213.
[41] DANIELL J E, SCHAEFER A M, WENZEL F. Losses associated with secondary effects in earthquakes[J]. Frontiers in Built Environment,2017,3(30):1 − 14.
[42] CUTTER S L. Compound, cascading, or complex disasters: what's in a name?[J]. Environment:Science and Policy for Sustainable Development,2018,60(6):16 − 25. doi: 10.1080/00139157.2018.1517518
[43] RYAN W B F, HEEZEN B C. Ionian Sea submarine canyons and the 1908 Messina turbidity current[J]. Geological Society of America Bulletin,1965,76:915 − 932. doi: 10.1130/0016-7606(1965)76[915:ISSCAT]2.0.CO;2
[44] CATTANEO A, BABONNEAU N, RATZOV G, et al. Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore central Algeria[J]. Natural Hazards and Earth System Sciences,2012,12(7):2159 − 2172. doi: 10.5194/nhess-12-2159-2012
[45] 董月娥, 左书华. 1989年以来我国海洋灾害类型、危害及特征分析[J]. 海洋地质动态,2009,25(6):28 − 33. [DONG Yuee, ZUOShuhua. Analysis of the types, hazards and characteristics of marine disasters in China since 1989[J]. Marine Geology Frontiers,2009,25(6):28 − 33. (in Chinese with English abstract)
DONG Yuee, ZUOShuhua. Analysis of the types, hazards and characteristics of marine disasters in China since 1989[J]. Marine Geology Frontiers, 2009, 25(6): 28-33. (in Chinese with English abstract)
[46] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报,2020,28(2):360 − 374. [XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology,2020,28(2):360 − 374. (in Chinese with English abstract)
XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. (in Chinese with English abstract)
[47] SCHULTHEISS P J. Pore pressures in marine sediments: an overview of measurement techniques and some geological and engineering applications[J]. Marine Geophysical Researches,1990,12(1/2):153 − 168.
[48] 贾永刚, 王振豪, 刘晓磊, 等. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报(自然科学版),2017,47(10):61 − 72. [JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. The research progress of field investigation and in-situ observation methods for submarine landslide[J]. Periodical of Ocean University of China,2017,47(10):61 − 72. (in Chinese with English abstract)
JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. The research progress of field investigation and in situ observation methods for submarine landslide[J]. Periodical of Ocean University of China, 2017, 47(10): 61-72. (in Chinese with English abstract)
[49] PRIOR D B, SUHAYDA J N, LU N Z, et al. Storm wave reactivation of a submarine landslide[J]. Nature,1989,341(6237):47 − 50. doi: 10.1038/341047a0
[50] FAVALI P, BERANZOLI L. Seafloor observatory science: A review[J]. Annals of Geophysics,2009,49(2/3):515 − 567.
[51] 阮爱国, 李家彪, 冯占英, 等. 海底地震仪及其国内外发展现状[J]. 东海海洋,2004,22(2):19 − 27. [RUAN Aiguo, LI Jiabiao, FENG Zhanying, et al. Ocean bottom seismometer and its development in the world[J]. Donghai Marine Science,2004,22(2):19 − 27. (in Chinese with English abstract)
RUAN Aiguo, LI Jiabiao, FENG Zhanying, et al. Ocean bottom seismometer and its development in the world[J]. Donghai Marine Science, 2004, 22(2): 19-27. (in Chinese with English abstract)
[52] KOPP H, WEINZIERL W, BECEL A, et al. Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust[J]. Earth and Planetary Science Letters,2011,304(1/2):121 − 134.
[53] SALLARÈS V, MARTÍNEZ-LORIENTE S, PRADA M, et al. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal Plains (SW Iberia)[J]. Earth and Planetary Science Letters,2013,365:120 − 131. doi: 10.1016/j.jpgl.2013.01.021
[54] 牛雄伟, 阮爱国, 吴振利, 等. 海底地震仪实用技术探讨[J]. 地球物理学进展,2014,29(3):1418 − 1425. [NIU Xiongwei, RUAN Aiguo, WU Zhenli, et al. Progress on practical skills of Ocean Bottom Seismometer(OBS) experiment[J]. Progress in Geophysics,2014,29(3):1418 − 1425. (in Chinese with English abstract)
NIU Xiongwei, RUAN Aiguo, WU Zhenli, et al. Progress on practical skills of Ocean Bottom Seismometer(OBS) experiment[J]. Progress in Geophysics, 2014, 29(3): 1418-1425. (in Chinese with English abstract)
[55] 余本善, 孙乃达. 海底地震采集技术发展现状及建议[J]. 海洋石油,2015,35(2):1 − 5. [YU Benshan, SUN Naida. Current development situations and suggestion on the techniques of ocean bottom seismic acquisition[J]. Offshore Oil,2015,35(2):1 − 5. (in Chinese with English abstract)
YU Benshan, SUN Naida. Current development situations and suggestion on the techniques of ocean bottom seismic acquisition[J]. Offshore Oil, 2015, 35(2): 1-5. (in Chinese with English abstract)
[56] 郝天珧, 游庆瑜. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报,2011,54(12):3352 − 3361. [HAO Tianyao, YOU Qingyu. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics,2011,54(12):3352 − 3361. (in Chinese with English abstract)
HAO Tianyao, YOU Qingyu. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics, 2011, 54(12): 3352-3361. (in Chinese with English abstract)
[57] PAPOULIA J, MAKRIS J, KOULAKOV I, et al. Microseismicity and Crustal Deformation of the Dodecanese Volcanic Area, Southeastern Aegean Sea Using an Onshore/Offshore Seismic Array[J]. Bollettino di Geofisica Teorica ed Applicata,2018,55(2):281 − 302.
[58] GOHL K. Structure and dynamics of a submarine continent: Tectonic-magmatic evolution of the Campbell Plateau (New Zealand)[R]. Report of the RV SONNE cruise SO-169, Germany: Alfred-Wegener-Institut für Polar-und Meeresforschung, 2003.
[59] WALLACE L M, ARAKI E, SAFFER D, et al. Near-field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough, southwest Japan[J]. Journal of Geophysical Research:Solid Earth,2016,121(11):8338 − 8351. doi: 10.1002/2016JB013417
[60] 吕枫, 周怀阳. 缆系海底科学观测网研究进展[J]. 工程研究-跨学科视野中的工程,2016,8(2):139 − 154. [LYU Feng, ZHOU Huaiyang. Progress of scientific cabled seafloor observatory networks[J]. Journal of Engineering Studies,2016,8(2):139 − 154. (in Chinese with English abstract)
LYU Feng, ZHOU Huaiyang. Progress of scientific cabled seafloor observatory networks[J]. Journal of Engineering Studies, 2016, 8(2): 139-154. (in Chinese with English abstract)
[61] 申中寅. 日本海洋实时监测系统DONET简介[J]. 国际地震动态,2018,48(7):34 − 40. [SHEN Zhongyin. A brief introduction to DONET in Japan[J]. Recent Developments in World Seismology,2018,48(7):34 − 40. (in Chinese with English abstract)
SHEN Zhongyin. A brief introduction to DONET in Japan[J]. Recent Developments in World Seismology, 2018, 48(7): 34-40. (in Chinese with English abstract)
[62] MULIA I E, SATAKE K. Correction to: Synthetic analysis of the efficacy of the S-net system in tsunami forecasting[J]. Earth, Planets and Space,2021,73(36):1 − 11.
[63] 张文涛, 黄稳柱. 光纤海底地震仪的研制与应用探索[C]//中国地球物理学会国家安全地球物理专业委员会, 陕西省地球物理学会军事地球物理专业委员会. 国家安全地球物理丛书(十四)—资源·环境与地球物理. 西安: 西安地图出版社, 2018: 296 − 300
ZHANG Wentao, HUANG Wenzhu. Development of fiber optic ocean bottom seismograph[C]//National Security Geophysics Committee of the Chinese Geophysical Society, Military Geophysics Committee of the Geophysical Society of Shaanxi Province. National Security Geophysics Series (XIV)—Resources·Environment and Geophysics. Xi’an: Xi’an Map Press, 2018: 296 − 300. (in Chinese with English abstract)
[64] MARRA G, CLIVATI C, LUCKETT R, et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science,2018,361(6401):486 − 490. doi: 10.1126/science.aat4458
[65] JOUSSET P, REINSCH T, RYBERG T, et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications,2018,9:2509. doi: 10.1038/s41467-018-04860-y
[66] SLADEN A, RIVET D, AMPUERO J P, et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables[J]. Nature Communications,2019,10:5777. doi: 10.1038/s41467-019-13793-z
[67] HOWE B M, ARBIC B K, AUCAN J, et al. SMART cables for observing the global ocean: science and implementation[J]. Frontiers in Marine Science,2019,6:424. doi: 10.3389/fmars.2019.00424
[68] 陈天, 贾永刚, 刘涛, 等. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J/OL]. 地学前缘, 2022. https://doi.org/10.13745/j.esf.sf.2021.9.30.
CHEN Tian, JIA Yonggang, LIU Tao, et al. Review and prospects of in-situ long term pore-pressures observation in marine sediments[J/OL]. Earth Science Frontiers: 1 − 16, 2022. https://doi.org/10.13745/j.esf.sf.2021.9.30. (in Chinese with English abstract)
[69] SULTAN N, SAVOYE B, JOUET G, et al. Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, southeast France)[J]. Canadian Geotechnical Journal,2010,47(4):486 − 496. doi: 10.1139/T09-105
[70] STEGMANN S, SULTAN N, KOPF A, et al. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France[J]. Marine Geology,2011,280(1/2/3/4):168 − 181.
[71] STEGMANN S, SULTAN N, GARZIGLIA S, et al. A long-term monitoring array for landslide precursors: a case study at the Ligurian slope (western Mediterranean Sea)[C]//All Days. April 30-May 3, 2012. Houston, Texas, USA. OTC, 2012: 1 − 10.
[72] SULTAN N, GARZIGLIA S, BOMPAIS X, et al. Transient groundwater flow through a coastal confined aquifer and its impact on nearshore submarine slope instability[J]. Journal of Geophysical Research: Earth Surface,2020,125(9):e2020JF005654.
[73] LIU T, WEI G L, KOU H L, et al. Pore pressure observation: pressure response of probe penetration and tides[J]. Acta Oceanologica Sinica,2019,38(7):107 − 113. doi: 10.1007/s13131-019-1462-4
[74] LIU T, LI S P, KOU H L, et al. Excess pore pressure observation in marine sediment based on Fiber Bragg Grating pressure sensor[J]. Marine Georesources & Geotechnology,2019,37(7):775 − 782.
[75] STENVOLD T, EIKEN O, ZUMBERGE M A, et al. High-precision relative depth and subsidence mapping from seafloor water-pressure measurements[J]. SPE Journal,2006,11(3):380 − 389. doi: 10.2118/97752-PA
[76] YOKOYAMA T, SHIMOYAMA M, MATSUDA S, et al. Monitoring system of seafloor subsidence for methane hydrate production test[C]//Society of Petrophysicists and Well-Log Analysts. 18th Formation Evaluation Symposium of Japan 2012. Japan: Society of Petrophysicists and Well-Log Analysts, 2012.
[77] YOKOYAMA T, SHIMOYAMA M, MATSUDA S, et al. Monitoring system for seafloor deformation during Methane Hydrate production test[C]//International Society of Offshore and Polar Engineers. Proceedings of the 10th (2013) ISOPE Ocean Mining and Gas Hydrates Symposium, ISOPE OMS 2013. Poland: Society of Petrophysicists and Well-Log Analysts, 2013: 132 − 135.
[78] CHADWICK W W, NOONER S L, BUTTERFIELD D A, et al. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount[J]. Nature Geoscience,2012,5(7):474 − 477. doi: 10.1038/ngeo1464
[79] ZUMBERGE M A. Precise optical path length measurement through an optical fiber: Application to seafloor strain monitoring[J]. Ocean Engineering,1997,24(6):531 − 542. doi: 10.1016/S0029-8018(96)00029-7
[80] WANG Z H, SUN Y F, JIA Y G, et al. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—initiation and process of sediment failure[J]. Landslides,2020,17(8):1849 − 1862. doi: 10.1007/s10346-020-01399-2
[81] SAITO H, YOKOYAMA T, UCHIYAMA S. Seafloor stability monitoring by displacements calculated from acceleration waveforms obtained by a 3-component servo-accelerometer system[C]//OCEANS 2006. September 18-21, 2006, Boston, MA, USA. IEEE, 2006: 1 − 6.
[82] FABIAN M, VILLINGER H. The Bremen Ocean bottom tiltmeter (OBT)–A technical article on a new instrument to monitor deep sea floor deformation and seismicity level[J]. Marine Geophysical Researches,2007,28(1):13 − 26. doi: 10.1007/s11001-006-9011-4
[83] FABIAN M, VILLINGER H. Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter[J]. Geochemistry, Geophysics, Geosystems,2008,9(7):488 − 498.
[84] PETERSEN F, KOPP H, LANGE D, et al. Measuring tectonic seafloor deformation and strain-build up with acoustic direct-path ranging[J]. Journal of Geodynamics,2019,124:14 − 24. doi: 10.1016/j.jog.2019.01.002
[85] YOKOTA Y, ISHIKAWA T, WATANABE S I. Seafloor crustal deformation data along the subduction zones around Japan obtained by GNSS-A observations[J]. Scientific Data,2018,5:180182. doi: 10.1038/sdata.2018.182
[86] EISMA D. Suspended matter in the aquatic environment[M]. Berlin: Springer, 1993: 1-8.
[87] WREN D G, BARKDOLL B D, KUHNLE R A, et al. Field techniques for suspended-sediment measurement[J]. Journal of Hydraulic Engineering,2000,126(2):97 − 104. doi: 10.1061/(ASCE)0733-9429(2000)126:2(97)
[88] 郭磊. 海底边界层原位综合观测系统研发与应用研究[D]. 青岛: 中国海洋大学, 2016
GUO Lei. Research and application of in-situ integrated observation system for seabed boundary layer [D]. Qingdao: Ocean University of China, 2016. (in Chinese with English abstract)
[89] TRAYKOVSKI P, HAY A E, IRISH J D, et al. Geometry, migration, and evolution of wave orbital ripples at LEO-15[J]. Journal of Geophysical Research: Oceans,1999,104(C1):1505 − 1524. doi: 10.1029/1998JC900026
[90] 季春生, 贾永刚, 朱俊江, 等. 海底沉积物孔隙压力原位长期观测技术回顾和展望[J/OL]. 地学前缘, 2022. https://doi.org/10.13745/j.esf.sf.2021.9.28.
JI Chunsheng, JIA Yonggang, ZHU Junjiang, et al. Development and application of in-situ observation system for bottom boundary layer in abyssal sea[J/OL]. Earth Science Frontiers, 2022. https://doi.org/10.13745/j.esf.sf.2021.9.28. (in Chinese with English abstract)
[91] DAVIS A M. Methane in marine sediments[J]. Continental Shelf Research,1992,12(10):1075 − 1264. doi: 10.1016/0278-4343(92)90068-U
[92] 杨肖迪, 马瑞民, 罗小桥, 等. 海底浅层气探测识别方法研究[J]. 海岸工程,2020,39(3):187 − 195. [YANG Xiaodi, MA Ruimin, LUO Xiaoqiao, et al. Study on the methods for detection and identification of sub-seabed shallow gases[J]. Coastal Engineering,2020,39(3):187 − 195. (in Chinese with English abstract)
YANG Xiaodi, MA Ruimin, LUO Xiaoqiao, et al. Study on the methods for detection and identification of sub-seabed shallow gases[J]. Coastal Engineering, 2020, 39(3): 187-195. (in Chinese with English abstract)
[93] 任子茵, 郭秀军, 吴景鑫. 浅水条件下浅层气走航式海洋电阻率法探测结果模拟分析[J]. 中国海洋大学学报(自然科学版),2019,49(7):56 − 63. [REN Ziyin, GUO Xiujun, WU Jingxin. Simulationand analysis of detection results of shallow gas under shallow water with a navigated DC marine resistivity method[J]. Periodical of Ocean University of China,2019,49(7):56 − 63. (in Chinese with English abstract)
REN Ziyin, GUO Xiujun, WU Jingxin. Simulationand analysis of detection results of shallow gas under shallow water with a navigated DC marine resistivity method[J]. Periodical of Ocean University of China, 2019, 49(7): 56-63. (in Chinese with English abstract)
[94] 孙翔, 郭秀军, 吴景鑫. 海底砂土中气体运移过程电阻率监测探针设计与实验[J]. 海洋学报,2020,42(5):139 − 149. [SUN Xiang, GUO Xiujun, WU Jingxin. Design and experiment of resistivity monitoring probe for gas migration in marine sand[J]. Acta Oceanologica Sinica,2020,42(5):139 − 149. (in Chinese with English abstract)
SUN Xiang, GUO Xiujun, WU Jingxin. Design and experiment of resistivity monitoring probe for gas migration in marine sand[J]. Acta Oceanologica Sinica, 2020, 42(5): 139-149. (in Chinese with English abstract)
[95] COWEN J P, COPSON D A, JOLLY J, et al. Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere[J]. Deep Sea Research Part I: Oceanographic Research Papers,2012,61:43 − 56. doi: 10.1016/j.dsr.2011.11.004
[96] SOLOMON E, BECKER K, KOPF A, et al. Listening down the pipe[J]. Oceanography,2019,32(1):98 − 101. doi: 10.5670/oceanog.2019.128
[97] ARAKI E, SAFFER D M, KOPF A J, et al. Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust[J]. Science,2017,356(6343):1157 − 1160. doi: 10.1126/science.aan3120
[98] URLAUB M, PETERSEN F, GROSS F, et al. Gravitational collapse of Mount Etna’s southeastern flank[J]. Science Advances,2018,4(10):eaat9700. doi: 10.1126/sciadv.aat9700
[99] 郭延辉, 杨溢, 杨志全, 等. 国产GB-InSAR在特大型水库滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2021,32(2):66 − 72. [GUO Yanhui, YANG Yi, YANG Zhiquan, et al. Application of GB-InSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):66 − 72. (in Chinese with English abstract)
GUO Yanhui, YANG Yi, YANG Zhiquan, et al. Application of GB-InSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 66-72. (in Chinese with English abstract)
[100] 周小龙, 贾强, 石鹏卿, 等. 免像控无人机航测技术在舟曲县立节北山滑坡-泥石流灾害应急处置中的应用[J]. 中国地质灾害与防治学报,2022,33(1):107 − 116. [ZHOU Xiaolong, JIA Qiang, SHI Pengqing, et al. Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):107 − 116. (in Chinese with English abstract)
ZHOU Xiaolong, JIA Qiang, SHI Pengqing, et al. Application of image-free control UAV aerial survey technology in emergency treatment of landslide-debris flow disaster in Lijie north hill, Zhouqu County[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 107-116. (in Chinese with English abstract)
[101] 张欢, 巨能攀, 陆渊, 等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质,2021,48(6):171 − 179. [ZHANG Huan, JU Nengpan, LU Yuan, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology,2021,48(6):171 − 179. (in Chinese with English abstract)
ZHANG Huan, JU Nengpan, LU Yuan, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 171-179. (in Chinese with English abstract)
[102] 方然可, 刘艳辉, 苏永超, 等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)
FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 181-187. (in Chinese with English abstract)
-