中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于LBM-DEM细观数值模拟的水力诱导覆盖型岩溶地面塌陷发育过程分析

陶小虎, 叶明, 龚建师, 王赫生, 胡晓雨. 基于LBM-DEM细观数值模拟的水力诱导覆盖型岩溶地面塌陷发育过程分析[J]. 中国地质灾害与防治学报, 2024, 35(1): 124-131. doi: 10.16031/j.cnki.issn.1003-8035.202207027
引用本文: 陶小虎, 叶明, 龚建师, 王赫生, 胡晓雨. 基于LBM-DEM细观数值模拟的水力诱导覆盖型岩溶地面塌陷发育过程分析[J]. 中国地质灾害与防治学报, 2024, 35(1): 124-131. doi: 10.16031/j.cnki.issn.1003-8035.202207027
TAO Xiaohu, YE Ming, GONG Jianshi, WANG Hesheng, HU Xiaoyu. Analysis of the formation process of the covered karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 124-131. doi: 10.16031/j.cnki.issn.1003-8035.202207027
Citation: TAO Xiaohu, YE Ming, GONG Jianshi, WANG Hesheng, HU Xiaoyu. Analysis of the formation process of the covered karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 124-131. doi: 10.16031/j.cnki.issn.1003-8035.202207027

基于LBM-DEM细观数值模拟的水力诱导覆盖型岩溶地面塌陷发育过程分析

  • 基金项目: 中国地质调查局地质调查项目(DD20221756;DD20230079)
详细信息
    作者简介: 陶小虎(1987—),男,水力学及河流动力学专业,博士,工程师,主要从事地下水环境研究。E-mail:taoxiaohu_cgs@126.com
    通讯作者: 王赫生(1984—),男,资源与环境专业,博士,高级工程师,主要从事水工环地质调查研究。E-mail:411099641@qq.com
  • 中图分类号: P642.26

Analysis of the formation process of the covered karst ground collapse induced by groundwater changes based on the coupled LBM-DEM numerical simulation at micro scale

More Information
  • 文章以水力驱动的覆盖型岩溶地面塌陷为背景,基于离散元方法和格子Boltzmann方法,采用Bouzidi插值反弹边界格式和动量交换法,建立一种可以从细观角度模拟覆盖型岩溶塌陷的二维格子Boltzmann方法—离散元方法流固耦合模型。在此基础上对承压水下降引起的覆盖型岩溶塌陷数值模拟开展了探索性研究。模拟结果表明:承压水位下降工况中地下水主要对隔水层岩溶开口处的颗粒产生影响,对土洞周围土体产生向下的作用力;土体颗粒的剥落容易造成土颗粒原位置和上方位置处水压的陡降,从而造成较强的水力坡降,使得地下水对内部颗粒作用力陡增,容易引起上方颗粒在地下水作用力和重力作用下失稳,导致从土体颗粒失稳至土层塌陷逐渐加速。研究成果对进一步从细观尺度进行水力驱动的覆盖型岩溶地面塌陷的发育过程与特征研究具有理论及实际意义。

  • 加载中
  • 图 1  Bouzidi插值反弹边界示意图

    Figure 1. 

    图 2  颗粒所受到水流的水平作用力随β的变化

    Figure 2. 

    图 3  覆盖型岩溶塌陷的建模流程

    Figure 3. 

    图 4  覆盖型岩溶塌陷LBM-DEM模型

    Figure 4. 

    图 5  承压水位下降工况覆盖型岩溶塌陷过程

    Figure 5. 

    图 6  塌陷过程中岩溶开口中心线不同高程处水压随时间变化曲线

    Figure 6. 

    图 7  塌陷过程中岩溶开口中心线颗粒受地下水垂向作用力随时间变化曲线

    Figure 7. 

    图 8  塌陷过程中岩溶开口中心线颗粒的垂向位移随时间变化曲线

    Figure 8. 

    表 1  计算模型参数

    Table 1.  Summary of simulation model parameters

    参数名称
    固体(DEM)密度/(kg·m−32700
    杨氏模量/Pa100×106
    泊松比0.3
    内摩擦角/(°)20
    法向黏聚力/(N·m−1150
    切向黏聚力/(N·m−1150
    时间步长/s2.5×10−5
    重力加速度/(m·s−29.8
    流体(LBM)密度/(kg·m−31000
    运动黏滞系数/(m2·s−11.01×10−6
    时间步长/s0.0001
    空间步长/m0.0001
    下载: 导出CSV
  • [1]

    ZALASIEWICZ J,WILLIAMS M,STEFFEN W,et al. The new world of the anthropocene[J]. Environmental Science & Technology,2010,44(7):2228 − 2231.

    [2]

    PRICE S J,FORD J R,COOPER A H,et al. Humans as major geological and geomorphological agents in the Anthropocene:The significance of artificial ground in Great Britain[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2011,369(1938):1056 − 1084.

    [3]

    李前银. 再论岩溶塌陷的形成机制[J]. 中国地质灾害与防治学报,2009,20(3):52 − 55. [LI Qianyin. Further study on formation mechanism of karst collaps[J]. The Chinese Journal of Geological Hazard and Control,2009,20(3):52 − 55. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2009.03.018

    LI Qianyin. Further study on formation mechanism of karst collaps[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(3): 52-55. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2009.03.018

    [4]

    余政兴,金福喜,段选亮. 河床透-阻型岩溶塌陷形成机理[J]. 中国地质灾害与防治学报,2020,31(2):57 − 66. [YU Zhengxing,JIN Fuxi,DUAN Xuanliang. Formation mechanism of karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):57 − 66. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2020.02.08

    YU Zhengxing, JIN Fuxi, DUAN Xuanliang. Formation mechanism of karst collapse with unconfined aquifer-aquitaed system in riverbed[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(2)57-66(in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2020.02.08

    [5]

    车增光,刘洪,喻永祥. 苏州市金庭镇蒋东岩溶塌陷地质条件及形成机理研究[J]. 华东地质,2021,42(1):85 − 92. [CHE Zengguang,LIU Hong,YU Yongxiang. Study on geological conditions and formation mechanism of karst collapse in Jiangdong Village,Jinting Town,Suzhou City[J]. East China Geology,2021,42(1):85 − 92. (in Chinese with English abstract)

    Che Zengguang, LIU Hong, YU Yongxiang. Study on geological conditions and formation mechanism of karst collapse in Jiangdong Village, Jinting Town, Suzhou City[J]. East China Geology, 2021, 42(1): 85-92. (in Chinese with English abstract)

    [6]

    缪世贤,黄敬军,武鑫,等. 徐州岩溶地质调查及其发育特征分析[J]. 水文地质工程地质,2017,44(2):172 − 177. [MIAO Shixian,HUANG Jingjun,WU Xin,et al. Karst geological survey and analysis of its development characteristics in Xuzhou[J]. Hydrogeology and Engineering Geology,2017,44(2):172 − 177. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.02.26

    MIAO Shixian, HUANG Jingjun, WU Xin, et al. Karst geological survey and analysis of its development characteristics in Xuzhou[J]. Hydrogeology and Engineering Geology, 2017, 44(2)172-177(in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.02.26

    [7]

    万志清,秦四清,李志刚,等. 土洞形成的机理及起始条件[J]. 岩石力学与工程学报,2003,22(8):1377 − 1382. [WAN Zhiqing,QIN Siqing,LI Zhigang,et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1377 − 1382. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.08.028

    WAN Zhiqing, QIN Siqing, LI Zhigang, et al. Formation mechanism and initial condition of soil cavity[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1377-1382. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.08.028

    [8]

    王滨,贺可强. 岩溶塌陷临界土洞的极限平衡高度公式[J]. 岩土力学,2006,27(3):458 − 462. [WANG Bin,HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics,2006,27(3):458 − 462. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.03.024

    WANG Bin, HE Keqiang. Study on limit equilibrium height expression of critical soil cave of karst collapse[J]. Rock and Soil Mechanics, 2006, 27(3): 458-462. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.03.024

    [9]

    陶小虎,赵坚,WANG Xiaoming,等. 地下水位变化对透-阻型岩溶塌陷影响的分析[J]. 中国岩溶,2017,36(6):777 − 785. [TAO Xiaohu,ZHAO Jian,WANG Xiaoming,et al. Analysis of seepage effect on the formation of sinkhole in unconfined aquifer-aquitard system caused by groundwater changes[J]. Carsologica Sinica,2017,36(6):777 − 785. (in Chinese with English abstract) doi: 10.11932/karst2017y50

    TAO Xiaohu, ZHAO Jian, WANG Xiaoming, et al. Analysis of seepage effect on the formation of sinkhole in unconfined aquifer-aquitard system caused by groundwater changes[J]. Carsologica Sinica, 2017, 36(6): 777-785. (in Chinese with English abstract) doi: 10.11932/karst2017y50

    [10]

    孙金辉. 覆盖型岩溶塌陷临界参数模型试验与数值模拟研究[D]. 成都: 西南交通大学, 2011: 7 − 35

    SUN Jinhui. Study on critical parameterin cover karst collapseby model experimentand numerical simulation[D]. Chengdu: Southwest Jiaotong University, 2011: 7 − 35. (in Chinese with English abstract)

    [11]

    LEI Mingtang, GAO Yongli, JIANG Xiaozhen, et al. Experimental study of physical models for sinkhole collapses in Wuhan, China[C]//Sinkholes and the Engineering and Environmental Impacts of Karst. San Antonio, Texas, USA. Reston, VA: American Society of Civil Engineers, 2005: 91-102.

    [12]

    MAHMOUD A. Application of digital image cross correlation to study sinkhole collapse[J]. ISRN Soil Science,2013:1 − 6.

    [13]

    Y F,ZHOU. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geotechnics,2014,55:330 − 341. doi: 10.1016/j.compgeo.2013.09.009

    [14]

    ALI S M. Modelling the effect of void migration underneath landfill liner system [D]. University of Nottingham, 2003.

    [15]

    金晓文,陈植华,曾斌,等. 岩溶塌陷机理定量研究的初步思考[J]. 中国岩溶,2013,32(4):437 − 446. [JIN Xiaowen,CHEN Zhihua,ZENG Bin,et al. Preliminary thinking of quantitative research on the mechanism of karst collapse[J]. Carsologica Sinica,2013,32(4):437 − 446. (in Chinese with English abstract)

    JIN Xiaowen, CHEN Zhihua, ZENG Bin, et al. Preliminary thinking of quantitative research on the mechanism of karst collapse[J]. Carsologica Sinica, 2013, 32(4): 437-446. (in Chinese with English abstract)

    [16]

    CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[M]. In Proc Int Symp Rock Fracture. Nancy; ISRM. 1971: 2 − 8.

    [17]

    周健, 贾敏才. 土工细观模型试验与数值模拟[M]. 北京: 科学出版社, 2008

    ZHOU Jian, JIA Mincai. Meso-model test and numerical simulation of geotechnical engineering[M]. Beijing: Science Press, 2008. (in Chinese)

    [18]

    陈松贵. 宾汉姆流体的LBM-DEM方法及自密实混凝土复杂流动研究[D]. 北京: 清华大学, 2014: 44 − 50

    CHEN Songgui. Development of LBM-DEM for Bingham suspensions with application to self-compacting concrete[D]. Beijing: Tsinghua University, 2014: 44 − 50. (in Chinese with English abstract)

    [19]

    QIAN Y H,D'HUMIÈRES D,LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters (EPL),1992,17(6):479 − 484. doi: 10.1209/0295-5075/17/6/001

    [20]

    BOUZIDI M,FIRDAOUSS M,LALLEMAND P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids,2001,13(11):3452 − 3459. doi: 10.1063/1.1399290

    [21]

    MEI Renwei, YU Dazhi, SHYY W, et al. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4 Pt 1): 041203.

    [22]

    CUI Xilin. Numerical simulation of internal fluidisation and cavity evolution due to a leaking pipe using the coupled Dem-lbm technique[D]. Birmingham, West Midlands, UK: University of Birmingham, 2013.

    [23]

    陈玉璞, 王惠民. 流体动力学[M]. 2版. 北京: 清华大学出版社, 2013.

    CHEN Yupu, WANG Huimin. Fluid dynamics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)

    [24]

    LOMINÉ F,SCHOLTÈS L,SIBILLE L,et al. Modeling of fluid-solid interaction in granular media with coupled lattice Boltzmann/discrete element methods:Application to piping erosion[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(6):577 − 596. doi: 10.1002/nag.1109

    [25]

    LHL A,GN B,ZB A,et al. Hydro-mechanical modeling of sinkhole occurrence processes in covered karst terrains during a flood[J]. Engineering Geology,2019,260:105249. doi: 10.1016/j.enggeo.2019.105249

    [26]

    HENTZ S. Modélisation d’une structure en béton armé soumise à un choc par la méthode des eléments discrets [D]. Grenoble: Université Grenoble 1 - Joseph Fourier, 2003.

    [27]

    MIKIO,SAKAI. Study on a large-scale discrete element model for fine particles in a fluidized bed[J]. Advanced Powder Technology,2012,23(5):673 − 681. doi: 10.1016/j.apt.2011.08.006

    [28]

    汤志刚,蔡承刚,王艳红,等. 基于光纤传感的石膏矿地面塌陷监测预警系统[J]. 中国地质灾害与防治学报,2022,33(5):93 − 101. [TANG Zhigang,CAI Chenggang,WANG Yanhong,et al. Monitoring and warning system for ground subsidence of gypsum mine based on fiber sensing[J]. The Chinese Journal of Geological Hazard and Control,2022,33(5):93 − 101. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202108034

    TANG Zhigang, CAI Chenggang, WANG Yanhong, et al. Monitoring and warning system for ground subsidence of gypsum mine based on fiber sensing[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5)93-101(in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202108034

    [29]

    何军,刘磊,黎清华,等. 隐伏岩溶区地下空间探测技术方法研究—以武汉市为例[J]. 水文地质工程地质,2020,47(6):47 − 56. [HE Jun,LIU Lei,LI Qinghua,et al. Techniques for detecting underground space in hidden karst region:Taking Wuhan as an example[J]. Hydrogeology & Engineering Geology,2020,47(6):47 − 56. (in Chinese with English abstract)

    HE Jun, LIU Lei, LI Qinghua, et al. Techniques for detecting underground space in hidden karst region: taking Wuhan as an example[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 47-56. (in Chinese with English abstract)

    [30]

    查甫生,刘从民,苏晶文,等. 铜陵市朝山地区岩溶塌陷形成条件与地面稳定性评价分析[J]. 地质论评,2020,66(1):246 − 254. [ZHA Fusheng,LIU Congmin,SU Jingwen,et al. Formation conditions of karst collapse and evaluation of ground stability in Chaoshan area of Tongling City[J]. Geological Review,2020,66(1):246 − 254. (in Chinese with English abstract) doi: 10.16509/j.georeview.2020.01.018

    ZHA Fusheng, LIU Congmin, SU Jingwen, et al. Formation conditions of karst collapse and evaluation of ground stability in Chaoshan area of Tongling City[J]. Geological Review, 2020, 66(1): 246-254. (in Chinese with English abstract) doi: 10.16509/j.georeview.2020.01.018

  • 加载中

(8)

(1)

计量
  • 文章访问数:  856
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2022-07-21
修回日期:  2023-03-06
录用日期:  2023-04-17
刊出日期:  2024-02-25

目录