中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于多尺度卷积神经网络的深圳市滑坡易发性评价

张清, 何毅, 陈学业, 高秉海, 张立峰, 赵占骜, 路建刚, 张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价[J]. 中国地质灾害与防治学报, 2024, 35(4): 146-162. doi: 10.16031/j.cnki.issn.1003-8035.202304022
引用本文: 张清, 何毅, 陈学业, 高秉海, 张立峰, 赵占骜, 路建刚, 张雅蕾. 基于多尺度卷积神经网络的深圳市滑坡易发性评价[J]. 中国地质灾害与防治学报, 2024, 35(4): 146-162. doi: 10.16031/j.cnki.issn.1003-8035.202304022
ZHANG Qing, HE Yi, CHEN Xueye, GAO Binghai, ZHANG Lifeng, ZHAO Zhanao, LU Jiangang, ZHANG Yalei. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 146-162. doi: 10.16031/j.cnki.issn.1003-8035.202304022
Citation: ZHANG Qing, HE Yi, CHEN Xueye, GAO Binghai, ZHANG Lifeng, ZHAO Zhanao, LU Jiangang, ZHANG Yalei. Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(4): 146-162. doi: 10.16031/j.cnki.issn.1003-8035.202304022

基于多尺度卷积神经网络的深圳市滑坡易发性评价

  • 基金项目: 自然资源部城市国土资源监测与仿真重点实验室开放基金资助课题(KF-2021-06-014);国家自然科学基金项目(42201459);甘肃省教育厅青年博士基金项目(2022QB-058)
详细信息
    作者简介: 张 清(2000—),男,硕士研究生,研究方向为深度学习与滑坡隐患识别。E-mail:1439112766@qq.com
    通讯作者: 何 毅(1987—),男,博士,教授,研究方向为深度学习与InSAR技术灾害评估。E-mail:764324437@qq.com
  • 中图分类号: P642.22

Landslide susceptibility assessment in Shenzhen based on multi-scale convolutional neural networks model

More Information
  • 卷积神经网络(convolutional neural networks,CNN)模型因其强大的特征提取能力被广泛应用于滑坡易发性评估,但传统CNN已难以满足要求。文章提出一种能够顾及深层与浅层特征的多尺度卷积神经网络(multi-scale convolutional neural networks,MSCNN)模型,通过增加模型深度和样本的感受野,挖掘更深层和更稳定的特征,提高复杂场景下的滑坡易发性评估可靠性。文章以深圳市为研究区,根据系统性原则和代表性原则选取了12个深圳市滑坡影响因子,构建多尺度卷积神经网络滑坡易发性评估模型,并与多层感知器(multilayer perceptron,MLP)、支持向量机(support vector machine,SVM)以及随机森林(random forest,RF)等方法进行对比。结果表明,文章构建的MSCNN模型的AUC值(0.99)较高,优于MLP(0.97)、SVM(0.91)和RF(0.85),证明提出的MSCNN模型具有优异的预测能力;深圳市极高易发性区域面积约为105.3 km2,占研究区总面积的4.98%,主要分布在坡体较陡、植被覆盖稀疏和人类工程活动频繁的龙岗区,坡度、地表粗糙度和地表起伏度成为影响深圳市滑坡的主控因子。文章实现的滑坡易发性图反映了深圳市滑坡灾害的分布现状,可为深圳市未来滑坡灾害防治提供数据支持和关键技术支撑。

  • 加载中
  • 图 1  研究区概况图

    Figure 1. 

    图 2  研究区滑坡隐患识别结果

    Figure 2. 

    图 3  滑坡影响因子空间分布

    Figure 3. 

    图 4  滑动裁剪过程

    Figure 4. 

    图 5  总体技术流程图

    Figure 5. 

    图 6  构建的MSCNN模型结构

    Figure 6. 

    图 7  影响因子频率比值等级

    Figure 7. 

    图 8  深圳市滑坡易发性评估结果

    Figure 8. 

    图 9  MSCNN模型精度评价曲线

    Figure 9. 

    图 10  四种模型的受试者工作特征曲线

    Figure 10. 

    图 11  谷歌地球图像调查结果

    Figure 11. 

    图 12  不同滑坡易发性在不同影响因子面积中的比重

    Figure 12. 

    图 13  模型验证结果

    Figure 13. 

    表 1  滑坡影响因子数据来源

    Table 1.  Data sources for landslide conditioning factors

    数据源 分辨率 滑坡影响因子 数据来源
    数字高程模型 30 m 高程 https://www.gscloud.cn/
    坡度
    坡向
    曲率
    地表粗糙度
    地表起伏度
    断层 1∶2500000 到断层距离 https://www.cgs.gov.cn/
    道路和河流 1∶1000000 到河流距离 OpenStreetMap
    到道路距离
    土地利用类型 30 m 土地利用类型 http://data.ess.tsinghua/
    土壤类型 1000 m 土壤类型 https://www.fao.org/
    沙含量 1000 m 沙含量 http://www.geodata.cn/
    下载: 导出CSV

    表 2  影响因子共线性评价表

    Table 2.  Evaluation of factor collinearity among conditioning factors

    序号 影响因子 VIF 容差
    1 高程 1.514 0.660
    2 坡度 6.666 0.150
    3 坡向 1.007 0.993
    4 曲率 1.003 0.997
    5 地表粗糙度 5.012 0.200
    6 地表起伏度 2.148 0.466
    7 到断层距离 1.082 0.924
    8 土壤类型 1.071 0.993
    9 沙含量 1.029 0.972
    10 到河流距离 1.110 0.901
    11 土地利用类型 1.285 0.778
    12 到道路距离 1.070 0.935
    下载: 导出CSV

    表 3  影响因子地理探测器结果

    Table 3.  Results of geodetector analysis for conditioning factors

    序号 影响因子 q
    1 高程 0.322
    2 坡度 0.185
    3 坡向 0.058
    4 曲率 0.073
    5 地表粗糙度 0.118
    6 地表起伏度 0.193
    7 到断层距离 0.107
    8 土壤类型 0.144
    9 沙含量 0.179
    10 到河流距离 0.172
    11 土地利用类型 0.128
    12 到道路距离 0.093
    下载: 导出CSV
  • [1]

    葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Reflections and suggestions on the application of integrated remote sensing in the early identification of major geological hazard potential[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)]

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Reflections and suggestions on the application of integrated remote sensing in the early identification of major geological hazard potential[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949 − 956. (in Chinese with English abstract)

    [2]

    刘帅,王涛,曹佳文,等. 基于优化随机森林模型的降雨群发滑坡易发性评价研究——以西秦岭极端降雨事件为例[J/OL]. 地质通报(2024-01-19)[2024-03-15]. [LIU Shuai,WANG Tao,CAO Jiawen,et al. A case study on susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model, west Qinling Mountains[J/OL]. Geological Bulletin of China,(2024-01-19)[2024-03-15]. http://kns.cnki.net/kcms/detail/11.4648.P.20240118.1821.002.html. (in Chinese with English abstract)]

    LIU Shuai, WANG Tao, CAO Jiawen, et al. A case study on susceptibility assessment of precipitation-induced mass landslides based on optimal random forest model, west Qinling Mountains[J/OL]. Geological Bulletin of China, (2024-01-19)[2024-03-15]. http://kns.cnki.net/kcms/detail/11.4648.P.20240118.1821.002.html. (in Chinese with English abstract)

    [3]

    冉涛,徐如阁,周洪福,等. 雅砻江流域深切河谷区滑坡类型、成因及分布规律——以子拖西―麻郎错河段为例[J]. 中国地质,2024,51(2):511 − 524. [RAN Tao,XU Ruge,ZHOU Hongfu,et al. Type, formation mechanism and distribution regularity of landslides in the deeply incised valley area of Yalong River Basin:A case study of Zituoxi–Malangcuo river section[J]. Geology in China,2024,51(2):511 − 524. (in Chinese with English abstract)]

    RAN Tao, XU Ruge, ZHOU Hongfu, et al. Type, formation mechanism and distribution regularity of landslides in the deeply incised valley area of Yalong River Basin: A case study of Zituoxi–Malangcuo river section[J]. Geology in China, 2024, 51(2): 511 − 524. (in Chinese with English abstract)

    [4]

    朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12):1551 − 1561. [ZHU Qing,ZENG Haowei,DING Yulin,et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica,2019,48(12):1551 − 1561. (in Chinese with English abstract)]

    ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551 − 1561. (in Chinese with English abstract)

    [5]

    陶伟,胡晓波,姜元俊,等. 颗粒粒径对滑坡碎屑流动力特征及能量转化的影响——以四川省三溪村滑坡为例[J]. 地质通报,2023,42(9):1610 − 1619. [TAO Wei,HU Xiaobo,JIANG Yuanjun,et al. Influence of particle size on dynamic characteristics and energy conversion of debris flow in landslide:A case study of Sanxicun landslide in Sichuan Province[J]. Geological Bulletin of China,2023,42(9):1610 − 1619.]

    TAO Wei, HU Xiaobo, JIANG Yuanjun, et al. Influence of particle size on dynamic characteristics and energy conversion of debris flow in landslide: A case study of Sanxicun landslide in Sichuan Province[J]. Geological Bulletin of China, 2023, 42(9): 1610 − 1619.

    [6]

    桑凯. 近60年中国滑坡灾害数据统计与分析[J]. 科技传播,2013,5(10):129. [SANG Kai. Statistics and analysis of landslide disasters in China in the last 60 years [J]. Public Communication of Science & Technology,2013,5(10):129. (in Chinese with English abstract)]

    SANG Kai. Statistics and analysis of landslide disasters in China in the last 60 years [J]. Public Communication of Science & Technology, 2013, 5(10): 129. (in Chinese with English abstract)

    [7]

    李振洪,宋闯,余琛,等. 卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J]. 武汉大学学报(信息科学版),2019,44(7):967 − 979 [LI Zhenhong,SONG Chuang,YU Chen,et al. Satellite radar remote sensing in landslide hazard detection and monitoring:Challenges and countermeasures[J]. Geomatics and Information Science of Wuhan University,2019,44(7):967 − 979. (in Chinese with English abstract)]

    LI Zhenhong, SONG Chuang, YU Chen, et al. Satellite radar remote sensing in landslide hazard detection and monitoring: Challenges and countermeasures[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967 − 979. (in Chinese with English abstract)

    [8]

    FANG Zhice,WANG Yi,PENG Ling,et al. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping[J]. Computers and Geosciences,2020,139:104470.

    [9]

    杨金山,王常效. 韧性城市建设的深圳实践与展望[J]. 特区实践与理论,2022(2):79 − 84. [YANG Jinshan,WANG Changxiao. Shenzhen practice and prospects for resilient city building[J]. Practice and Theory of Sezs,2022(2):79 − 84. (in Chinese with English abstract)]

    YANG Jinshan, WANG Changxiao. Shenzhen practice and prospects for resilient city building[J]. Practice and Theory of Sezs, 2022(2): 79 − 84. (in Chinese with English abstract)

    [10]

    CHEN Wei,POURGHASEMI H R,PANAHI M,et al. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio,generalized additive model,and support vector machine techniques[J]. Geomorphology,2017,297:69 − 85.

    [11]

    刘传正. 深圳红坳弃土场滑坡灾难成因分析[J]. 中国地质灾害与防治学报,2016,27(1):1 − 5. [LIU Chuanzheng. Genetic mechanism of landslide tragedy happened in Hong’ao dumping place in Shenzhen, China[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):1 − 5. (in Chinese with English abstract)]

    LIU Chuanzheng. Genetic mechanism of landslide tragedy happened in Hong’ao dumping place in Shenzhen, China[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1): 1 − 5. (in Chinese with English abstract)

    [12]

    高杨, 卫童瑶, 李滨, 等. 深圳“12•20” 渣土场远程流化滑坡动力过程分析[J]. 水文地质工程地质,2019,46(1):129 − 138. [GAO Yang, WEI Tongyao, LI Bin, et al. Dynamics process simulation of long Run-out catastrophic landfill flowslide on December 20th, 2015 in Shenzhen, China[J]. Hydrogeology & Engineering Geology,2019,46(1):129 − 138. (in Chinese with English abstract)]

    GAO Yang, WEI Tongyao, LI Bin, et al. Dynamics process simulation of long Run-out catastrophic landfill flowslide on December 20th, 2015 in Shenzhen, China[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 129 − 138. (in Chinese with English abstract)

    [13]

    朱庆,张曼迪,丁雨淋,等. 环境因子空间特征约束的区域滑坡敏感性模糊逻辑分析方法[J]. 武汉大学学报(信息科学版),2021,46(10):1431 − 1440. [ZHU Qing,ZHANG Mandi,DING Yulin,et al. A fuzzy logic analysis method for regional landslide sensitivity with spatial feature constraints of environmental factors[J]. Geomatics and Information Science of Wuhan University,2021,46(10):1431 − 1440. (in Chinese with English abstract)]

    ZHU Qing, ZHANG Mandi, DING Yulin, et al. A fuzzy logic analysis method for regional landslide sensitivity with spatial feature constraints of environmental factors[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1431 − 1440. (in Chinese with English abstract)

    [14]

    刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstr-act)]

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98 − 106. (in Chinese with English abstr-act)

    [15]

    何书,鲜木斯艳·阿布迪克依木,胡萌,等. 基于自组织特征映射网络-随机森林模型的滑坡易发性评价——以江西大余县为例[J]. 中国地质灾害与防治学报,2022,33(1):132 − 140. [HE Shu,ABUDIKEYIMU XMSY,HU Meng,et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model:A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):132 − 140. (in Chinese with English abstract)]

    HE Shu, ABUDIKEYIMU XMSY, HU Meng, et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model: A case study of Dayu County of Jiangxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 132 − 140. (in Chinese with English abstract)

    [16]

    贾雨霏,魏文豪,陈稳,等. 基于SOM-I-SVM耦合模型的滑坡易发性评价[J]. 水文地质工程地质,2023,50(3):125 − 137. [JIA Yufei,WEI Wenhao,CHEN Wen,et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology& Engineering Geology,2023,50(3):125 − 137. (in Chinese with English abstract)]

    JIA Yufei, WEI Wenhao, CHEN Wen, et al. Landslide susceptibility assessment based on the SOM-I-SVM model[J]. Hydrogeology& Engineering Geology, 2023, 50(3): 125 − 137. (in Chinese with English abstract)

    [17]

    HUANG Faming,CAO Zhongshan,GUO Jianfei,et al. Comparisons of heuristic,general statistical and machine learning models for landslide susceptibility prediction and mapping[J]. Catena,2020,191:104580.

    [18]

    王毅,方志策,牛瑞卿,等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报,2021,23(12):2244 − 2260. [WANG Yi,FANG Zhice,NIU Ruiqing,et al. Landslide hazard susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science,2021,23(12):2244 − 2260. (in Chinese with English abstract)]

    WANG Yi, FANG Zhice, NIU Ruiqing, et al. Landslide hazard susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science, 2021, 23(12): 2244 − 2260. (in Chinese with English abstract)

    [19]

    蒋万钰,陈冠,孟兴民,等. 基于卷积神经网络模型的区域滑坡敏感性评价——以川藏铁路沿线为例[J]. 兰州大学学报(自然科学版),2022,58(2):203 − 211. [JIANG Wanyu,CHEN Guan,MENG Xingmin,et al. Regional landslide sensitivity evaluation based on convolutional neural network model:An example along the Sichuan-Xizang Railway[J]. Journal of Lanzhou University(Natual Sciences),2022,58(2):203 − 211. (in Chinese with English abstract)]

    JIANG Wanyu, CHEN Guan, MENG Xingmin, et al. Regional landslide sensitivity evaluation based on convolutional neural network model: An example along the Sichuan-Xizang Railway[J]. Journal of Lanzhou University(Natual Sciences), 2022, 58(2): 203 − 211. (in Chinese with English abstract)

    [20]

    赵占骜,王继周,毛曦,等. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版),(2023-04-12)[2023-04-21]. [ZHAO Zhanao,WANG Jizhou,MAO Xi,et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University,(2023-04-12)[2023-04-21]. https://doi.org/10.13203/j.whugis20220325. (in Chinese with English abstract)]

    ZHAO Zhanao, WANG Jizhou, MAO Xi, et al. A multi-dimensional CNN coupled landslide susceptibility assessment method[J]. Geomatics and Information Science of Wuhan University, (2023-04-12)[2023-04-21]. https://doi.org/10.13203/j.whugis20220325. (in Chinese with English abstract)

    [21]

    HE Yi,ZHAO Zhan’ao,YANG Wang,et al. A unified network of information considering superimposed landslide factors sequence and pixel spatial neighbourhood for landslide susceptibility mapping[J]. International Journal of Applied Earth Observation and Geoinformation,2021,104:102508.

    [22]

    李粮纲,徐玉胜,江辉煌,等. 深圳地区地质环境特征与地质灾害防治[J]. 安全与环境工程,2007(4):28 − 31. [LI Lianggang,XU Yusheng,JIANG Huihuang,et al. Characteristics of the geological environment and prevention of geological hazards in Shenzhen[J]. Safety and Environmental Engineering,2007(4):28 − 31. (in Chinese with English abstract)]

    LI Lianggang, XU Yusheng, JIANG Huihuang, et al. Characteristics of the geological environment and prevention of geological hazards in Shenzhen[J]. Safety and Environmental Engineering, 2007(4): 28 − 31. (in Chinese with English abstract)

    [23]

    李丹彤. 深圳市地质灾害防治管理研究[D]. 深圳:深圳大学,2017. [LI Dantong. Study on the management of geological disaster prevention and control in Shenzhen[D]. Shenzhen:Shenzhen University,2017. (in Chinese with English abstract)]

    LI Dantong. Study on the management of geological disaster prevention and control in Shenzhen[D]. Shenzhen: Shenzhen University, 2017. (in Chinese with English abstract)

    [24]

    崔玉龙,傅贵,郭鸿,等. 基于谷歌影像的新疆典型黄土区滑坡分布分析[J]. 陕西理工大学学报(自然科学版),2020,36(2):51 − 56. [CUI Yulong,FU Gui,GUO Hong,et al. Analysis of landslide distribution in typical loess areas of Xinjiang based on Google images[J]. Journal of Shaanxi University of Technology(Natural Science Edition),2020,36(2):51 − 56. (in Chinese with English abstract)]

    CUI Yulong, FU Gui, GUO Hong, et al. Analysis of landslide distribution in typical loess areas of Xinjiang based on Google images[J]. Journal of Shaanxi University of Technology(Natural Science Edition), 2020, 36(2): 51 − 56. (in Chinese with English abstract)

    [25]

    BUI D T,PRADHAN B,LOFMAN O,et al. Spatial prediction of landslide hazards in Hoa Binh Province (Vietnam):A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models[J]. Catena,2012,96:28 − 40.

    [26]

    陈学兄. 基于遥感与GIS的中国水土流失定量评价[D]. 杨凌:西北农林科技大学,2013. [CHEN Xuexiong. Quantitative evaluation of soil erosion in China based on remote sensing and GIS[D]. YANG Ling:Northwest Agriculture and Forestry University,2013. (in Chinese with English abstract)]

    CHEN Xuexiong. Quantitative evaluation of soil erosion in China based on remote sensing and GIS[D]. YANG Ling: Northwest Agriculture and Forestry University, 2013. (in Chinese with English abstract)

    [27]

    王文辉. 联合SBAS-InSAR与机器学习的滑坡隐患识别——以兰州市为例[D]. 兰州:兰州交通大学,2021. [WANG Wenhui. Combined SBAS-InSAR and machine learning for landslide hazard identification[D]. Lanzhou:Lanzhou Jiaotong University,2021. (in Chinese with English abstract)]

    WANG Wenhui. Combined SBAS-InSAR and machine learning for landslide hazard identification[D]. Lanzhou: Lanzhou Jiaotong University, 2021. (in Chinese with English abstract)

    [28]

    HE Sanwei,PAN Peng,DAI Lan,et al. Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta,Three Gorges,China[J]. Geomorphology,2012,171/172:30 − 41.

    [29]

    张玉芳,齐明柱,马华. 深圳市边坡病害及其防治[J]. 岩石力学与工程学报,2006,(增刊2):3412 − 3421. [ZHANG Yufang,QI Mingzhu,MA Hua. Slope diseases and prevention in Shenzhen[J]. Chinese Journal of Rock Mechanics and Engineering,2006,(Sup 2):3412 − 3421. (in Chinese with English abstract)]

    ZHANG Yufang, QI Mingzhu, MA Hua. Slope diseases and prevention in Shenzhen[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, (Sup 2): 3412 − 3421. (in Chinese with English abstract)

    [30]

    李利峰,张晓虎,邓慧琳,等. 基于熵指数与逻辑回归耦合模型的滑坡灾害易发性评价——以蓝田县为例[J]. 科学技术与工程,2020,20(14):5536 − 5543. [LI Lifeng,ZHANG Xiaohu,DENG Huilin,et al. Landslide hazard susceptibility evaluation based on entropy index and logistic regression coupled model:Lantian County as an example[J]. Science Technology and Engineering,2020,20(14):5536 − 5543. (in Chinese with English abstract)]

    LI Lifeng, ZHANG Xiaohu, DENG Huilin, et al. Landslide hazard susceptibility evaluation based on entropy index and logistic regression coupled model: Lantian County as an example[J]. Science Technology and Engineering, 2020, 20(14): 5536 − 5543. (in Chinese with English abstract)

    [31]

    何书,胡萌,杨志华,等. 基于模糊频率比与熵指数的滑坡易发性评价——以崇义县为例[J]. 有色金属科学与工程,2022,13(4):80 − 90. [HE Shu,HU Meng,YANG Zhihua,et al. Landslide susceptibility evaluation based on fuzzy frequency ratio and entropy index:An example from Chongyi County[J]. Nonferrous Metals Science and Engineering,2022,13(4):80 − 90. (in Chinese with English abstract)]

    HE Shu, HU Meng, YANG Zhihua, et al. Landslide susceptibility evaluation based on fuzzy frequency ratio and entropy index: An example from Chongyi County[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 80 − 90. (in Chinese with English abstract)

    [32]

    王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng,XU Chengdong. Geodetector:Principles and prospects[J]. Acta Geographi-ca Sinica,2017,72(1):116 − 134. (in Chinese with English abstract)]

    WANG Jinfeng, XU Chengdong. Geodetector: Principles and prospects[J]. Acta Geographi-ca Sinica, 2017, 72(1): 116 − 134. (in Chinese with English abstract)

    [33]

    王志恒,胡卓玮,赵文吉,等. 基于多层感知器模型的区域滑坡敏感性评价研究——以四川低山丘陵区为例[J]. 防灾减灾工程学报,2015,35(5):691 − 698. [WANG Zhiheng,HU Zhuowei,ZHAO Wenji,et al. A study on regional landslide sensitivity evaluation based on multi-layer perceptron model:An example of low mountain hilly area in Sichuan[J]. Journal of Disaster Prevention and Mitigation Engineering,2015,35(5):691 − 698. (in Chinese with English abstract)]

    WANG Zhiheng, HU Zhuowei, ZHAO Wenji, et al. A study on regional landslide sensitivity evaluation based on multi-layer perceptron model: An example of low mountain hilly area in Sichuan[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5): 691 − 698. (in Chinese with English abstract)

    [34]

    王卫东,刘攀,龚陆. 基于支持向量机模型的四川省滑坡灾害易发性区划[J]. 铁道科学与工程学报,2019,16(5):1194 − 1200. [WANG Weidong,LIU Pan,GONG Lu. Landslide hazard susceptibility zoning in Sichuan Province based on support vector machine model[J]. Journal of Railway Science and Engineering,2019,16(5):1194 − 1200. (in Chinese with English abstract)]

    WANG Weidong, LIU Pan, GONG Lu. Landslide hazard susceptibility zoning in Sichuan Province based on support vector machine model[J]. Journal of Railway Science and Engineering, 2019, 16(5): 1194 − 1200. (in Chinese with English abstract)

    [35]

    黄发明,胡松雁,闫学涯,等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报,2022,41(2):79 − 90. [HUANG Faming,HU Songyan,YAN Xueya,et al. Machine learning-based predictive modeling of landslide susceptibility and its master control factor identification[J]. Bulletin of Geological Science and Technology,2022,41(2):79 − 90. (in Chinese with English abstract)]

    HUANG Faming, HU Songyan, YAN Xueya, et al. Machine learning-based predictive modeling of landslide susceptibility and its master control factor identification[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 79 − 90. (in Chinese with English abstract)

    [36]

    HONG H,TSANGARATOS P,ILIA I,et al. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping[J]. Sci Total Environ,2020,742:140549.

  • 加载中

(13)

(3)

计量
  • 文章访问数:  851
  • PDF下载数:  141
  • 施引文献:  0
出版历程
收稿日期:  2023-04-21
修回日期:  2023-10-24
刊出日期:  2024-08-25

目录