中国地质环境监测院
中国地质灾害防治工程行业协会
主办

白鹤滩水电站库区红层砂岩干湿循环下结构劣化及渗透性演化规律

林诗哲, 胡新丽, 张海燕, 李宁杰, 刘欣宇. 白鹤滩水电站库区红层砂岩干湿循环下结构劣化及渗透性演化规律[J]. 中国地质灾害与防治学报, 2024, 35(5): 67-77. doi: 10.16031/j.cnki.issn.1003-8035.202309020
引用本文: 林诗哲, 胡新丽, 张海燕, 李宁杰, 刘欣宇. 白鹤滩水电站库区红层砂岩干湿循环下结构劣化及渗透性演化规律[J]. 中国地质灾害与防治学报, 2024, 35(5): 67-77. doi: 10.16031/j.cnki.issn.1003-8035.202309020
LIN Shizhe, HU Xinli, ZHANG Haiyan, LI Ningjie, LIU Xinyu. Structural degradation and permeability evolution of red sandstone under dry-wet cycles in the Baihetan hydropower station reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 67-77. doi: 10.16031/j.cnki.issn.1003-8035.202309020
Citation: LIN Shizhe, HU Xinli, ZHANG Haiyan, LI Ningjie, LIU Xinyu. Structural degradation and permeability evolution of red sandstone under dry-wet cycles in the Baihetan hydropower station reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(5): 67-77. doi: 10.16031/j.cnki.issn.1003-8035.202309020

白鹤滩水电站库区红层砂岩干湿循环下结构劣化及渗透性演化规律

  • 基金项目: 国家自然科学基金重点国际(地区)合作研究项目(42020104006)
详细信息
    作者简介: 林诗哲(2000—),男,辽宁盘锦人,硕士研究生,主要从事岩土体稳定性评价与地质灾害监测预警方面的研究。E-mail:linsz@cug.edu.cn
    通讯作者: 胡新丽(1968—),女,教授,博士,博士生导师,主要地质灾害防治及岩土体稳定性评价等研究工作。E-mail:huxinli@cug.edu.cn
  • 中图分类号: P694

Structural degradation and permeability evolution of red sandstone under dry-wet cycles in the Baihetan hydropower station reservoir area

More Information
  • 受库水位周期性波动及降雨的影响,库岸边坡岩石长期处于干湿交替的环境中,导致其劣化损伤,对岸坡稳定性构成巨大威胁。文章以白鹤滩水电站的红层砂岩为研究对象,开展硫酸钠盐溶液干湿循环试验、CT扫描、数字岩心建模及Avizo渗流模拟,研究了红层砂岩在干湿循环作用下的结构劣化及渗透性演化规律。结果表明:红层砂岩的质量损失率(α)和渗透率(k)随循环次数(N)的增加呈指数形式上升;总孔隙度、有效孔隙度及有效孔隙度占比随N的增加均先减小后增大;讨论认为红层砂岩在盐溶液干湿循环作用下的结构劣化,是溶蚀和盐结晶共同作用的结果。早期主要由于方解石、斜长石等矿物在溶液中发生溶解而产生结构损伤;中期岩石受到盐结晶和溶蚀作用的共同损伤;后期盐结晶作用逐渐减弱,岩石损伤再次以溶蚀作用为主。研究结果为白鹤滩水电站库滑坡长期稳定性评价提供重要理论依据。

  • 加载中
  • 图 1  白鹤滩水电站库区红层砂岩岩样取样点

    Figure 1. 

    图 2  CT扫描成像

    Figure 2. 

    图 3  CT图像处理及三维空隙模型

    Figure 3. 

    图 4  渗流模拟示意图

    Figure 4. 

    图 5  种子填充法相邻规则

    Figure 5. 

    图 6  不同循环次数下岩样照片

    Figure 6. 

    图 7  质量损失率变化拟合曲线

    Figure 7. 

    图 8  孔隙度随循环次数的变化规律

    Figure 8. 

    图 9  不同干湿循环次数下的孔隙网络模型

    Figure 9. 

    图 10  不同干湿循环次数下孤立孔隙的孔径分布

    Figure 10. 

    图 11  不同循环次数下各切片孔隙度分布曲线

    Figure 11. 

    图 12  不同干湿循环次数下的渗流通道分布、渗流速度和渗透率

    Figure 12. 

    图 13  渗透率变化拟合曲线

    Figure 13. 

    表 1  红层砂岩的矿物组成及含量

    Table 1.  Mineral composition and content of red-bedded sandstone

    矿物名称 质量分数/%
    黏土矿物 36.6
    石英 22.7
    方解石 16.8
    斜长石 15.3
    黄铁矿 3.2
    白云石 2.1
    钾长石 1.9
    菱铁矿 1.3
    其他矿物 0.1
    下载: 导出CSV

    表 2  岩样在盐溶液中发生的化学反应

    Table 2.  Chemical reactions of rock samples in salt solution

    矿物 化学反应方程式
    石英 SiO2+2H2O=H4SiO4
    方解石 CaCO3=Ca2++
    斜长石 NaAlSi3O8+5.5H2O=0.5Al2Si2O5(OH)4+Na++OH+2H4SiO4
    下载: 导出CSV
  • [1]

    孙钱程,徐晓,丰光亮,等. 长时浸泡红砂岩加/卸荷条件下的剪切特性及细观损伤机理[J]. 水文地质工程地质,2024,51(2):77 − 89. [SUN Qiancheng, XU Xiao, FENG Guangliang, et al. Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions[J]. Hydrogeology & Engineering Geology,2024,51(2):77 − 89. (in Chinese with English abstract)]

    SUN Qiancheng, XU Xiao, FENG Guangliang, et al. Shear characteristics and mesoscopic damage mechanism of long time soaking red sandstone under loading and unloading conditions[J]. Hydrogeology & Engineering Geology, 2024, 51(2): 77 − 89. (in Chinese with English abstract)

    [2]

    许旭堂,鲜振兴,杨枫,等. 水-力耦合及干湿循环效应对浅层残积土斜坡稳定性的影响[J]. 中国地质灾害与防治学报,2022,33(4):28 − 36. [XU Xutang,XIAN Zhenxing,YANG Feng,et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):28 − 36. (in Chinese with English abstract)]

    XU Xutang, XIAN Zhenxing, YANG Feng, et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 28 − 36. (in Chinese with English abstract)

    [3]

    于越,李长冬,洪望兵,等. 干湿循环作用下白鹤滩小坝组红层砂岩强度特性与结构损伤研究[J]. 安全与环境工程,2022,29(4):24 − 32. [YU Yue,LI Changdong,HONG Wangbing,et al. Strength characteristics and structural damage of red sandstone in Baihetan Xiaoba formation under wetting-drying cycles[J]. Safety and Environmental Engineering,2022,29(4):24 − 32. (in Chinese with English abstract)]

    YU Yue, LI Changdong, HONG Wangbing, et al. Strength characteristics and structural damage of red sandstone in Baihetan Xiaoba formation under wetting-drying cycles[J]. Safety and Environmental Engineering, 2022, 29(4): 24 − 32. (in Chinese with English abstract)

    [4]

    YAO Wenmin,LI Changdong,ZHAN Hongbin,et al. Multiscale study of physical and mechanical properties of sandstone in Three Gorges Reservoir Region subjected to cyclic wetting–drying of Yangtze River water[J]. Rock Mechanics and Rock Engineering,2020,53(5):2215 − 2231. doi: 10.1007/s00603-019-02037-7

    [5]

    HUA Wen,DONG Shiming,PENG Fan,et al. Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,2017,93:242 − 249. doi: 10.1016/j.ijrmms.2017.01.017

    [6]

    梁金同,文华国,李笑天,等. 碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展[J]. 地球科学,2023,48(2):814 − 834. [LIANG Jintong,WEN Huaguo,LI Xiaotian,et al. Research progress of burial dissolution and modification of carbonate reservoirs and fluid-rock simulation experiments[J]. Earth Science,2023,48(2):814 − 834. (in Chinese with English abstract)]

    LIANG Jintong, WEN Huaguo, LI Xiaotian, et al. Research progress of burial dissolution and modification of carbonate reservoirs and fluid-rock simulation experiments[J]. Earth Science, 2023, 48(2): 814 − 834. (in Chinese with English abstract)

    [7]

    张子翼,胡冉,廖震,等. 重力条件下粗糙裂隙溶蚀过程的可视化试验研究[J]. 水文地质工程地质,2023,50(2):178 − 188. [ZHANG Ziyi,HU Ran,LIAO Zhen,et al. Visualization experimental investigation into the dissolution processes in rough fracture under gravity conditions[J]. Hydrogeology & Engineering Geology,2023,50(2):178 − 188. (in Chinese with English abstract)]

    ZHANG Ziyi, HU Ran, LIAO Zhen, et al. Visualization experimental investigation into the dissolution processes in rough fracture under gravity conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 178 − 188. (in Chinese with English abstract)

    [8]

    李华明,蔡乐军,陈南南,等. 基于室内试验的四川峨眉—汉源高速廖山隧道碳酸盐岩溶蚀特征分析[J]. 中国地质灾害与防治学报,2021,32(4):73 − 84. [LI Huaming,CAI Lejun,CHEN Nannan,et al. Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei-Hanyuan expressway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):73 − 84. (in Chinese with English abstract)]

    LI Huaming, CAI Lejun, CHEN Nannan, et al. Experimental analysis on dissolution characteristics of carbonate rocks in Liaoshan tunnel of Emei-Hanyuan expressway in Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 73 − 84. (in Chinese with English abstract)

    [9]

    WU Y. Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment[J]. Environmental Geology,2003,44(7):811 − 819. doi: 10.1007/s00254-003-0819-9

    [10]

    王剑,应春业,胡新丽,等. 浸泡作用下碎石土剪切强度衰减规律及机理[J]. 地质科技通报,2022(6):294 − 300. [WANG Jian,YING Chunye,HU Xinli,et al. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology,2022(6):294 − 300. (in Chinese with English abstract)]

    WANG Jian, YING Chunye, HU Xinli, et al. Shear strength attenuation law and mechanism of gravel-soil under immersion[J]. Bulletin of Geological Science and Technology, 2022(6): 294 − 300. (in Chinese with English abstract)

    [11]

    ZHAO Chongbin,HOBBS B E,ORD A. Chemical dissolution-front instability associated with water-rock reactions in groundwater hydrology:Analyses of porosity-permeability relationship effects[J]. Journal of Hydrology,2016,540:1078 − 1087. doi: 10.1016/j.jhydrol.2016.07.022

    [12]

    YAO Huayan,ZHANG Zhenhua,ZHU Zhaohui. Uniaxial mechanical properties of sandstone under cyclic of drying and wetting[J]. Advanced Materials Research,2011,243/244/245/246/247/248/249:2310-2313.

    [13]

    HALE P A. A laboratory investigation of the effects of cyclic heating and cooling,wetting and drying,and freezing and thawing on the compressive strength of selected sandstones[J]. Environmental and Engineering Geoscience,2003,9(2):117 − 130. doi: 10.2113/9.2.117

    [14]

    袁璞,马芹永. 干湿循环条件下煤矿砂岩分离式霍普金森压杆试验研究[J]. 岩土力学,2013,34(9):2557 − 2562. [YUAN Pu,MA Qinyong. Split Hopkinson pressure bar tests on sandstone in coalmine under cyclic wetting and drying[J]. Rock and Soil Mechanics,2013,34(9):2557 − 2562. (in Chinese with English abstract)]

    YUAN Pu, MA Qinyong. Split Hopkinson pressure bar tests on sandstone in coalmine under cyclic wetting and drying[J]. Rock and Soil Mechanics, 2013, 34(9): 2557 − 2562. (in Chinese with English abstract)

    [15]

    ZHAO Yunfeng,REN Song,JIANG Deyi,et al. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials,2018,191:923 − 931. doi: 10.1016/j.conbuildmat.2018.10.069

    [16]

    ESPINOSA-MARZAL R M,SCHERER G W. Impact of in-pore salt crystallization on transport properties[J]. Environmental Earth Sciences,2013,69(8):2657 − 2669. doi: 10.1007/s12665-012-2087-z

    [17]

    BENAVENTE D,MARTÍNEZ-MARTÍNEZ J,CUETO N,et al. Salt weathering in dual-porosity building dolostones[J]. Engineering Geology,2007,94(3/4):215 − 226.

    [18]

    JIANG Xihui,LI Changdong,ZHOU Jiaqing,et al. Salt-induced structure damage and permeability enhancement of Three Gorges Reservoir sandstone under wetting-drying cycles[J]. International Journal of Rock Mechanics and Mining Sciences,2022,153:105100. doi: 10.1016/j.ijrmms.2022.105100

    [19]

    SCRIVANO S,GAGGERO L. An experimental investigation into the salt-weathering susceptibility of building limestones[J]. Rock Mechanics and Rock Engineering,2020,53(12):5329 − 5343. doi: 10.1007/s00603-020-02208-x

    [20]

    张贵,胡文君,李倩,等. 金沙江河谷巧家段地下水化学特征[J]. 中国岩溶,2017,36(3):339 − 345. [ZHANG Gui,HU Wenjun,LI Qian,et al. Groundwater chemical characteristics of the Qiaojia district in Jinshajiang River valley,Yunnan,China[J]. Carsologica Sinica,2017,36(3):339 − 345. (in Chinese with English abstract)] doi: 10.11932/karst20170307

    ZHANG Gui, HU Wenjun, LI Qian, et al. Groundwater chemical characteristics of the Qiaojia district in Jinshajiang River valley, Yunnan, China[J]. Carsologica Sinica, 2017, 36(3): 339 − 345. (in Chinese with English abstract) doi: 10.11932/karst20170307

    [21]

    ZHANG Dujie,KANG Yili,SELVADURAI A P S,et al. Experimental investigation of the effect of salt precipitation on the physical and mechanical properties of a tight sandstone[J]. Rock Mechanics and Rock Engineering,2020,53(10):4367 − 4380. doi: 10.1007/s00603-019-02032-y

    [22]

    张丙吉,辛全明,季铁军,等. 干湿循环作用下砂岩力学特性及能量损伤演化[J]. 水运工程,2022(1):192 − 197. [ZHANG Bingji,XIN Quanming,JI Tiejun,et al. Mechanical properties and energy damage evolution of sandstone under dry-wet cycle[J]. Port & Waterway Engineering,2022(1):192 − 197. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-4972.2022.01.033

    ZHANG Bingji, XIN Quanming, JI Tiejun, et al. Mechanical properties and energy damage evolution of sandstone under dry-wet cycle[J]. Port & Waterway Engineering, 2022(1): 192 − 197. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4972.2022.01.033

    [23]

    HECKBERT P S. A seed fill algorithm[M]. Amsterdam:Elsevier,1990:275 − 277.

    [24]

    孙亮,王晓琦,金旭,等. 微纳米孔隙空间三维表征与连通性定量分析[J]. 石油勘探与开发,2016,43(3):490 − 498. [SUN Liang,WANG Xiaoqi,JIN Xu,et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development,2016,43(3):490 − 498. (in Chinese with English abstract)] doi: 10.1016/S1876-3804(16)30057-X

    SUN Liang, WANG Xiaoqi, JIN Xu, et al. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space[J]. Petroleum Exploration and Development, 2016, 43(3): 490 − 498. (in Chinese with English abstract) doi: 10.1016/S1876-3804(16)30057-X

    [25]

    HAMMECKER C,MERTZ J D,FISCHER C,et al. A geometrical model for numerical simulation of capillary imbibition in sedimentary rocks[J]. Transport in Porous Media,1993,12(2):125 − 141. doi: 10.1007/BF00616976

    [26]

    DARCY H. Les Fontaines Publiques de La Ville de Dijon[M]. Victor Dalmont; 1856. (in French

    [27]

    傅晏,王子娟,刘新荣,等. 干湿循环作用下砂岩细观损伤演化及宏观劣化研究[J]. 岩土工程学报,2017,39(9):1653 − 1661. [FU Yan,WANG Zijuan,LIU Xinrong,et al. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering,2017,39(9):1653 − 1661. (in Chinese with English abstract)] doi: 10.11779/CJGE201709013

    FU Yan, WANG Zijuan, LIU Xinrong, et al. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1653 − 1661. (in Chinese with English abstract) doi: 10.11779/CJGE201709013

    [28]

    张莹, 任战利, 兰华平, 等. 关中盆地新近系蓝田-灞河组热储层物性及渗流特征研究[J]. 地质通报,2024,43(5):712 − 725. [ZHANG Ying, REN Zhanli, LAN Huaping, et al. Physical properties and percolation characteristics of Neogene Lantian-Bahe Formation thermal reservoir in Guanzhong Basin[J]. Geological Bulletin of China,2024,43(5):712 − 725. (in Chinese with English abstract)]

    ZHANG Ying, REN Zhanli, LAN Huaping, et al. Physical properties and percolation characteristics of Neogene Lantian-Bahe Formation thermal reservoir in Guanzhong Basin[J]. Geological Bulletin of China, 2024, 43(5): 712 − 725. (in Chinese with English abstract)

    [29]

    刘庆, 林天懿, 杨淼, 等. 北京地区雾迷山组地热储层微观孔隙结构及孔渗特征[J]. 地质通报,2022,41(4):657 − 668. [LIU Qing, LIN Tianyi, YANG Miao, et al. Micropore structure and physical property of geothermal reservoir of Wumishan Formation in Beijing area[J]. Geological Bulletin of China,2022,41(4):657 − 668. (in Chinese with English abstract)]

    LIU Qing, LIN Tianyi, YANG Miao, et al. Micropore structure and physical property of geothermal reservoir of Wumishan Formation in Beijing area[J]. Geological Bulletin of China, 2022, 41(4): 657 − 668. (in Chinese with English abstract)

    [30]

    GHOBADI M H,BABAZADEH R. Experimental studies on the effects of cyclic freezing–thawing,salt crystallization,and thermal shock on the physical and mechanical characteristics of selected sandstones[J]. Rock Mechanics and Rock Engineering,2015,48(3):1001 − 1016. doi: 10.1007/s00603-014-0609-6

    [31]

    胡文龙,刘赞群,裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报,2019,33(增刊1):239 − 243. [HU Wenlong,LIU Zanqun,PEI Min. Effect of air entraining agent on sulfate crystallization distress on sulphoaluminate cement concrete[J]. Materials Reports,2019,33(Sup 1):239 − 243. (in Chinese with English abstract)]

    HU Wenlong, LIU Zanqun, PEI Min. Effect of air entraining agent on sulfate crystallization distress on sulphoaluminate cement concrete[J]. Materials Reports, 2019, 33(Sup 1): 239 − 243. (in Chinese with English abstract)

    [32]

    ZHAO Fei,SUN Qiang,ZHANG Weiqiang. Combined effects of salts and wetting–drying cycles on granite weathering[J]. Bulletin of Engineering Geology and the Environment,2020,79(7):3707 − 3720. doi: 10.1007/s10064-020-01773-3

    [33]

    YUAN Wen,LIU Xinrong,FU Yan. Chemical thermodynamics and chemical kinetics analysis of sandstone dissolution under the action of dry–wet cycles in acid and alkaline environments[J]. Bulletin of Engineering Geology and the Environment,2019,78(2):793 − 801. doi: 10.1007/s10064-017-1162-9

    [34]

    肖娜,李实,林梅钦. CO2-水-岩石相互作用对岩石孔渗参数及孔隙结构的影响——以延长油田35-3井储层为例[J]. 油田化学,2018,35(1):85 − 90. [XIAO Na,LI Shi,LIN Meiqin. Effect of CO2-water-rock interaction on porosity,permeability and pore structure characters of reservoir rock:a case study of 35-3 well in Yanchang oilfield[J]. Oilfield Chemistry,2018,35(1):85 − 90. (in Chinese with English abstract)]

    XIAO Na, LI Shi, LIN Meiqin. Effect of CO2-water-rock interaction on porosity, permeability and pore structure characters of reservoir rock: a case study of 35-3 well in Yanchang oilfield[J]. Oilfield Chemistry, 2018, 35(1): 85 − 90. (in Chinese with English abstract)

    [35]

    PIRIZADEH S,SARIKHANI R,JAMSHIDI A,et al. Physico-mechanical properties of the sandstones and effect of salt crystallization on them:A comparative study between stable and unstable slopes (a case study of the Khorramabad-Zal highway in Iran)[J]. Case Studies in Construction Materials,2022,17:e01375. doi: 10.1016/j.cscm.2022.e01375

    [36]

    WANG Fugang,ZHAO Yanjie,LI Chuang,et al. An experimental study on the corrosion characteristics of the karst tunnel engineering area in southwest China[J]. Bulletin of Engineering Geology and the Environment,2019,78(6):4047 − 4061. doi: 10.1007/s10064-018-1411-6

    [37]

    PALCHIK V,HATZOR Y H. The influence of porosity on tensile and compressive strength of porous chalks[J]. Rock Mechanics and Rock Engineering,2004,37(4):331 − 341. doi: 10.1007/s00603-003-0020-1

  • 加载中

(13)

(2)

计量
  • 文章访问数:  280
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2023-09-12
修回日期:  2023-11-29
录用日期:  2024-07-16
刊出日期:  2024-10-25

目录