中国地质环境监测院
中国地质灾害防治工程行业协会
主办

考虑岩土体物理力学参数空间校准分区的滑坡危险性评价

殷玮民, 李远耀, 李星, 李明, 居乐, 谢藕. 考虑岩土体物理力学参数空间校准分区的滑坡危险性评价[J]. 中国地质灾害与防治学报, 2025, 36(2): 162-174. doi: 10.16031/j.cnki.issn.1003-8035.202311006
引用本文: 殷玮民, 李远耀, 李星, 李明, 居乐, 谢藕. 考虑岩土体物理力学参数空间校准分区的滑坡危险性评价[J]. 中国地质灾害与防治学报, 2025, 36(2): 162-174. doi: 10.16031/j.cnki.issn.1003-8035.202311006
YIN Weimin, LI Yuanyao, LI Xing, LI Ming, JU Le, XIE Ou. Landslide assessment considering spatial calibration zoning of physical and mechanical parameters of rock and soil mass[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 162-174. doi: 10.16031/j.cnki.issn.1003-8035.202311006
Citation: YIN Weimin, LI Yuanyao, LI Xing, LI Ming, JU Le, XIE Ou. Landslide assessment considering spatial calibration zoning of physical and mechanical parameters of rock and soil mass[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 162-174. doi: 10.16031/j.cnki.issn.1003-8035.202311006

考虑岩土体物理力学参数空间校准分区的滑坡危险性评价

  • 基金项目: 三峡后续工作地质灾害防治项目(0001212012A C50021)
详细信息
    作者简介: 殷玮民(1997—),男,硕士研究生,主要从事工程地质、地质灾害分析与防治的研究。E-mail:1499413681@qq.com
    通讯作者: 李远耀(1978—),男,副教授,主要从事工程地质与地质灾害方面的教学研究工作。E-mail:yuanyaoli2007@126.com
  • 中图分类号: P642.22

Landslide assessment considering spatial calibration zoning of physical and mechanical parameters of rock and soil mass

More Information
  • 滑坡危险性评价是区域滑坡灾害风险预警与管控的关键环节之一。分布式斜坡稳定性定量评估模型(stability index mapping,SINMAP)因能有效反映边坡稳定性的物理力学机制,广泛用于滑坡危险性评价中。但传统SINMAP模型忽略了岩土体特征随地质环境变化而产生的空间差异性,导致评价结果精确度偏低。针对上述不足,文章开展了基于不同空间校准区域的改进SINMAP模型研究。以重庆市万州区大周镇为例,经频率比和敏感性指数分析,从反映滑坡成因的8个指标因子中确定岩土体类型、植被覆盖度和距道路距离作为关键指标因子。根据关键指标因子的空间分布差异,将研究区划分为6个不同空间校准区域,赋予对应岩土体物理力学参数,开展传统SINMAP及其改进模型的滑坡危险性评价对比研究。结果表明:(1)总体上,两种模型预测的高和极高滑坡危险区主要分布在研究区库岸、河流两侧以及工程活动强烈的区域;(2)最危险工况下,改进SINMAP模型的AUC值为86.8%,高于传统SINMAP模型的AUC值(73.9%),识别准确度提高了12.9%;(3)在滑坡灾害局部计算结果上,最危险工况下有81.82%的真实滑坡点落入中危险等级以上的区域,大于传统SINMAP模型的72.73%。因而,改进SINMAP模型具备识别效果更佳,识别结果空间分布较连续,计算结果更符合真实滑坡实际发育特征的优势。

  • 加载中
  • 图 1  大周镇地貌及区域位置图

    Figure 1. 

    图 2  大周镇滑坡灾害点分布图

    Figure 2. 

    图 3  八角树滑坡剖面图

    Figure 3. 

    图 4  无限边坡稳定性模型图解

    Figure 4. 

    图 5  SINMAP模型改进流程图

    Figure 5. 

    图 6  万州区降雨各重现期降雨量图

    Figure 6. 

    图 7  传统SINMAP模型4种工况下滑坡灾害危险分区图

    Figure 7. 

    图 8  校准区划分结果图

    Figure 8. 

    图 9  改进SINMAP模型四种工况下滑坡灾害危险分区图

    Figure 9. 

    图 10  ROC精度分析曲线

    Figure 10. 

    图 11  工况四模拟结果对比图

    Figure 11. 

    表 1  滑坡危险性分区表

    Table 1.  Landslide hazard zoning table

    条件 类别 预测状态
    SI≥1.5 1 极稳定区
    1.5>SI≥1.25 2 稳定区
    1.25>SI≥1.0 3 基本稳定区
    1.0>SI≥0.5 4 潜在不稳定区
    0.5>SI≥0 5 不稳定区
    下载: 导出CSV

    表 2  4种降雨工况下的降雨量值和T/R的上下限

    Table 2.  Rainfall values and upper and lower limits of T/R under four rainfall conditions

    类别 降雨工况 降雨量值
    /mm
    模型参数T/R
    下限 上限
    1 多年平均单日最大降雨量 91 1836 3000
    2 20年一遇单日最大降雨量 161 1038 3000
    3 50年一遇单日最大降雨量 188 889 3000
    4 100年一遇单日最大降雨量 208 803 3000
    下载: 导出CSV

    表 3  传统SINMAP模型计算参数

    Table 3.  Calculation parameters of traditional SINMAP model

    g
    /(m·s−2
    湿度/% 黏聚力/kPa 内摩擦角/(°) 岩土体密度
    /(kg·m−3
    下限 上限 下限 上限
    9.8 10 5 25 10 25 1900
    下载: 导出CSV

    表 4  传统SINMAP模型4种工况下滑坡灾害危险分区统计表

    Table 4.  Traditional SINMAP model landslide hazard zoning statistical table under four working conditions

    工况 危险性分级 滑坡数
    /个
    各危险等级
    面积/m2
    占总滑坡
    比例/%
    占总面积
    比例/%
    工况一 低危险区 25 15 235 400 56.82 62.57
    高危险区 3 1 145 600 6.82 4.70
    中危险区 16 7 671 880 36.36 31.51
    极高危险区 0 297 200 0.00 1.22
    工况二 低危险区 16 9 764 400 36.36 40.10
    中危险区 22 12 463 400 50.00 51.18
    高危险区 6 1 825 100 13.64 7.50
    极高危险区 0 297 200 0.00 1.22
    工况三 低危险区 11 7 047 230 25.00 28.94
    中危险区 17 9 985 030 38.64 41.00
    高危险区 13 5 878 900 29.55 24.14
    极高危险区 3 1 438 930 6.82 5.91
    工况四 低危险区 9 7 047 230 20.45 28.94
    中危险区 16 9 724 080 36.36 39.93
    高危险区 13 4 685 400 29.55 19.24
    极高危险区 6 2 893 380 13.64 11.88
    下载: 导出CSV

    表 5  各因子频率比及敏感性指数值

    Table 5.  Frequency ratios and sensitivity index values of each factor

    指标因子 $ {{E}}_{{i}} $ 分级 滑坡数/个 FR
    坡度/(°) 1.503 245 0~10 9 0.139740
    10~15 11 0.503245
    15~20 6 0.157018
    20~25 7 0.407057
    25~30 4 0.118700
    30~35 5 0.145126
    35~50 2 0.768240
    50~75 0 −1
    高程/m 1.211 059 115~215 19 0.501409
    215~315 12 0.293254
    315~415 6 0.441150
    415~515 5 0.345820
    515~660 2 0.709650
    斜坡形态 0.471677 凹形坡 24 0.255 287
    直线形 4 0.091880
    凸形坡 16 0.216390
    地形湿度指数 2.034 442 0~3.38 2 0.829100
    3.38~4.62 8 0.244240
    4.62~5.77 12 0.011489
    5.77~7.00 12 0.887885
    7.00~8.42 7 1.034442
    8.42~10.18 1 −1
    10.18~12.92 0 −1
    12.92~23.08 1 0.198803
    距水系距离/m 1.467 326 >200 19 −0.132430
    <100 12 1.234746
    100~200 14 0.232580
    植被覆盖度 3.026 948 0~0.05 0 −1
    0.05~0.1 1 0.263940
    0.1~0.15 2 0.165240
    0.15~0.2 2 0.307280
    0.2~0.25 5 0.341520
    0.25~0.3 13 2.026948
    0.3~0.35 1 0.812460
    0.35~0.4 5 0.240920
    0.4~0.45 8 0.624582
    0.45~0.54 1 0.419160
    岩土体类型 3.151 116 第四系堆积层 32 2.366056
    硬岩岩组 5 0.510910
    软岩岩组 3 0.748480
    软硬互层 4 0.785060
    斜坡结构 1.191 694 顺向坡 9 0.988524
    逆向坡 4 0.095070
    斜交坡 25 0.203170
    水平坡 6 0.743289
    距道路距离/m 2.492 95 0~50 22 0.727403
    50~100 9 1.631703
    100~150 2 0.640560
    150~200 7 0.437250
    200~250 3 0.091470
    下载: 导出CSV

    表 6  改进SINMAP模型计算参数

    Table 6.  Improved SINMAP model calculation parameters

    校准区域 g/(m·s−2 含水率
    /%
    c/kPa $ \varphi $/(°) ρ/(kg·m−3
    下限 上限 下限 上限
    ①第四系堆积层-
    高植被覆盖度-
    路网分布密集
    9.79 10 10 20 16 28 1990
    ②泥岩-高植被
    覆盖度-路网
    分布中等
    9.79 10 14 22 22 30 2190
    ③泥砂互层-
    中等植被覆盖度-
    路网分布密集
    9.79 10 15 24 15 30 2280
    ④泥砂互层-
    低植被覆盖度-
    路网分布稀疏
    9.79 10 15 26 15 40 2280
    ⑤砂岩-中等
    植被覆盖度-
    路网分布密集
    9.79 10 18 30 26 30 2460
    ⑥砂岩-中等
    植被覆盖度-
    路网分布稀疏
    9.79 10 18 35 26 35 2460
    下载: 导出CSV

    表 7  改进SINMAP模型4种工况下滑坡灾害危险分区统计表

    Table 7.  Improved SINMAP model landslide hazard zoning statistical table under four working conditions

    工况 危险性分级 滑坡数
    /个
    各危险等级
    面积/m2
    占总滑坡
    比例/%
    占总面积
    比例/%
    工况一 低危险区 14 13 078 258 31.82 53.71
    高危险区 21 10 039 697 47.73 41.23
    中危险区 3 1 142 031 6.82 4.69
    极高危险区 1 90 843 2.27 0.37
    工况二 低危险区 11 8 676 595 25.00 35.63
    中危险区 23 13 428 910 52.27 55.15
    高危险区 9 1 940 453 20.45 7.97
    极高危险区 1 304 871 2.27 1.25
    工况三 低危险区 6 6 139 994 13.64 25.21
    中危险区 22 11 401 591 50.00 46.82
    高危险区 12 5 628 730 27.27 23.12
    极高危险区 4 1 180 514 9.09 4.85
    工况四 低危险区 4 5 579 180 9.09 22.91
    中危险区 21 9 941 706 47.73 40.83
    高危险区 10 6 363 600 22.73 26.13
    极高危险区 9 2 466 343 20.45 10.13
    下载: 导出CSV
  • [1]

    阳清青,余秋兵,张廷斌,等. 基于GDIV模型的大渡河中游地区滑坡危险性评价与区划[J]. 中国地质灾害与防治学报,2023,34(5):130 − 140. [YANG Qingqing,YU Qiubing,ZHANG Tingbin,et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control,2023,34(5):130 − 140. (in Chinese with English abstract)]

    YANG Qingqing, YU Qiubing, ZHANG Tingbin, et al. Landslide hazard assessment in the middle reach area of the Dadu River based on the GDIV model[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(5): 130 − 140. (in Chinese with English abstract)

    [2]

    HUANG Ziyan,PENG Li,LI Sainan,et al. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison[J]. Environmental Science and Pollution Research,2023,30(38):88612 − 88626. doi: 10.1007/s11356-023-28730-3

    [3]

    曲雪妍,李媛,房浩,等. 基于时空维度耦合的地质灾害发育程度评价研究[J]. 水文地质工程地质,2022,49(1):137 − 145. [QU Xueyan,LI Yuan,FANG Hao,et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology,2022,49(1):137 − 145. (in Chinese with English abstract)]

    QU Xueyan, LI Yuan, FANG Hao, et al. A study of the evaluation of geo-hazards development degree based on time-space coupling[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 137 − 145. (in Chinese with English abstract)

    [4]

    周苏华,付宇航,邢静康,等. 基于不同统计模型的肯尼亚滑坡危险性评价[J]. 中国地质灾害与防治学报,2023,34(4):114 − 124. [ZHOU Suhua,FU Yuhang,XING Jingkang,et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):114 − 124. (in Chinese with English abstract)]

    ZHOU Suhua, FU Yuhang, XING Jingkang, et al. Assessment of landslide hazard risk in Kenya based on different statistical models[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(4): 114 − 124. (in Chinese with English abstract)

    [5]

    GAUTAM P,KUBOTA T,SAPKOTA L M,et al. Landslide susceptibility mapping with GIS in high mountain area of Nepal:A comparison of four methods[J]. Environmental Earth Sciences,2021,80(9):359. doi: 10.1007/s12665-021-09650-2

    [6]

    李星,杨赛,李远耀,等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J]. 地质科技通报,2023,42(3):81 − 92. [LI Xing,YANG Sai,LI Yuanyao,et al. An improved slope element method for fine-grained evaluation of regional landslide susceptibility[J] Geological Science and Technology Bulletin,2023,42 (3):81 − 92. (in Chinese with English abstract)]

    LI Xing, YANG Sai, LI Yuanyao, et al. An improved slope element method for fine-grained evaluation of regional landslide susceptibility[J] Geological Science and Technology Bulletin, 2023, 42 (3): 81 − 92. (in Chinese with English abstract)

    [7]

    谢家龙,李远耀,王宁涛,等. 考虑库水位及降雨联合作用的云阳县区域滑坡危险性评价[J]. 长江科学院院报,2021,38(12):72 − 81. [XIE Jialong,LI Yuanyao,WANG Ningtao,et al. Assessment of regional landslide hazard in Yunyang County consi-dering the combined effect of reservoir water level and rainfall[J]. Journal of Yangtze River Scientific Research Institute,2021,38(12):72 − 81. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20200815

    XIE Jialong, LI Yuanyao, WANG Ningtao, et al. Assessment of regional landslide hazard in Yunyang County consi-dering the combined effect of reservoir water level and rainfall[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(12): 72 − 81. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200815

    [8]

    TIEN BUI D,TUAN T A,KLEMPE H,et al. Spatial prediction models for shallow landslide hazards:A comparative assessment of the efficacy of support vector machines,artificial neural networks,kernel logistic regression,and logistic model tree[J]. Landslides,2016,13(2):361 − 378. doi: 10.1007/s10346-015-0557-6

    [9]

    石爱红,李国庆,丁德民,等. 考虑非饱和土基质吸力的丁家坡滑坡变形机制及稳定性评价[J]. 水文地质工程地质,2022,49(6):141 − 151. [SHI Aihong,LI Guoqing,DING Demin,et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology,2022,49(6):141 − 151. (in Chinese with English abstract)]

    SHI Aihong, LI Guoqing, DING Demin, et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 141 − 151. (in Chinese with English abstract)

    [10]

    高波,王晓勇. 基于SINMAP模型的延安市滑坡危险性区划[J]. 水土保持通报,2019,39(3):211 − 216. [GAO Bo,WANG Xiaoyong. Risk zoning of landslide based on SINMAP model in Yan’an City[J]. Bulletin of Soil and Water Conservation,2019,39(3):211 − 216. (in Chinese with English abstract)]

    GAO Bo, WANG Xiaoyong. Risk zoning of landslide based on SINMAP model in Yan’an City[J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 211 − 216. (in Chinese with English abstract)

    [11]

    李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划——以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract)]

    LI Yanjie, TANG Yaming, DENG Yahong, et al. Hazard assessment of shallow loess landslides induced by rainfall: A case study of Liulin County of Shanxi Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 105 − 114. (in Chinese with English abstract)

    [12]

    HE Jianyin,QIU Haijun,QU Feihang,et al. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models[J]. Catena,2021,197:104999. doi: 10.1016/j.catena.2020.104999

    [13]

    郭子正,何俊,黄达,等. 降雨诱发浅层滑坡危险性的快速评估模型及应用[J]. 岩石力学与工程学报,2023,42(5):1188 − 1201. [GUO Zizheng,HE Jun,HUANG Da,et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(5):1188 − 1201. (in Chinese with English abstract)]

    GUO Zizheng, HE Jun, HUANG Da, et al. Fast assessment model for rainfall-induced shallow landslide hazard and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1188 − 1201. (in Chinese with English abstract)

    [14]

    李婧,卢玲,唐泽. 基于TRIGRS模型的区域降雨型浅层滑坡危险性评价[J]. 甘肃水利水电技术,2022,58(1):24 − 27. [LI Jing,LU Ling,TANG Ze. Risk assessment of regional rainfall induced shallow landslides based on TRIGRS model[J] Gansu Water Resources and Hydropower Technology,2022,58 (1):24 − 27 (in Chinese with English abstract)]

    LI Jing, LU Ling, TANG Ze. Risk assessment of regional rainfall induced shallow landslides based on TRIGRS model[J] Gansu Water Resources and Hydropower Technology, 2022, 58 (1): 24 − 27 (in Chinese with English abstract)

    [15]

    TAYLOR D W. Fundamentals of soil mechanics[J]. Soil Science,66(2):161.

    [16]

    MONTGOMERY D R,DIETRICH W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research,1994,30(4):1153 − 1171. doi: 10.1029/93WR02979

    [17]

    PACK R T, TARBOTON D G, GOODWIN C N. The SINMAP approach to terrain stability mapping[J]. Congress of the International Association of Engineering Geology, 1998: 21 − 25.

    [18]

    NERY T D,VIEIRA B C. Susceptibility to shallow landslides in a drainage basin in the Serra do Mar,São Paulo,Brazil,predicted using the SINMAP mathematical model[J]. Bulletin of Engineering Geology and the Environment,2015,74(2):369 − 378. doi: 10.1007/s10064-014-0622-8

    [19]

    LIN Wei,YIN Kunlong,WANG Ningtao,et al. Landslide hazard assessment of rainfall-induced landslide based on the CF-SINMAP model:A case study from Wuling Mountain in Hunan Province,China[J]. Natural Hazards,2021,106(1):679 − 700. doi: 10.1007/s11069-020-04483-x

    [20]

    武利. 基于SINMAP模型的区域滑坡危险性定量评估及模型验证[J]. 地理与地理信息科学,2012,28(2):35 − 39. [WU Li. A SINMAP-based quantitative assessment and model verification of regional landslide hazard[J]. Geography and Geo-Information Science,2012,28(2):35 − 39. (in Chinese with English abstract)]

    WU Li. A SINMAP-based quantitative assessment and model verification of regional landslide hazard[J]. Geography and Geo-Information Science, 2012, 28(2): 35 − 39. (in Chinese with English abstract)

    [21]

    刘凡,邓亚虹,慕焕东,等. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究[J]. 水文地质工程地质,2023:1 − 13. [LIU Fan,DENG Yahong,MU Huandong,et al. Research on the stability evaluation method of shallow loess landslides induced by rainfall based on the maximum entropy infinite slope model[J]. Hydrogeology & Engineering Geology,2023:1 − 13. (in Chinese with English abstract)]

    LIU Fan, DENG Yahong, MU Huandong, et al. Research on the stability evaluation method of shallow loess landslides induced by rainfall based on the maximum entropy infinite slope model[J]. Hydrogeology & Engineering Geology, 2023: 1 − 13. (in Chinese with English abstract)

    [22]

    汪莹. 不同模型的滑坡易发性评价精度讨论[J]. 贵州地质,2022,39(2):144 − 151. [WANG Ying. Discussion on the accuracy of landslide susceptibility evaluation of different models[J]. Guizhou Geology,2022,39(2):144 − 151. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-5943.2022.02.007

    WANG Ying. Discussion on the accuracy of landslide susceptibility evaluation of different models[J]. Guizhou Geology, 2022, 39(2): 144 − 151. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-5943.2022.02.007

    [23]

    郭子正,殷坤龙,黄发明,等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报,2019,38(2):287 − 300. [GUO Zizheng,YIN Kunlong,HUANG Faming,et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(2):287 − 300. (in Chinese with English abstract)]

    GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Evaluation of landslide susceptibility based on landslide classification and weighted frequency ratio model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 287 − 300. (in Chinese with English abstract)

    [24]

    王志恒,胡卓玮,赵文吉,等. 基于确定性系数概率模型的降雨型滑坡孕灾环境因子敏感性分析——以四川省低山丘陵区为例[J]. 灾害学,2014,29(2):109 − 115. [WANG Zhiheng,HU Zhuowei,ZHAO Wenji,et al. Susceptibility analysis of precipitation-induced landslide disaster-pregnant environmental factors based on the certainty factor probability model:Taking the hilly area in Sichuan as example[J]. Journal of Catastrophology,2014,29(2):109 − 115. (in Chinese with English abstract)]

    WANG Zhiheng, HU Zhuowei, ZHAO Wenji, et al. Susceptibility analysis of precipitation-induced landslide disaster-pregnant environmental factors based on the certainty factor probability model: Taking the hilly area in Sichuan as example[J]. Journal of Catastrophology, 2014, 29(2): 109 − 115. (in Chinese with English abstract)

    [25]

    邵山,汤明高,聂兵其,等. 宣汉地区降雨型滑坡空间发育规律及敏感性分析[J]. 长江科学院院报,2018,35(5):41 − 46. [SHAO Shan,TANG Minggao,NIE Bingqi,et al. Spatial development law and sensitivity analysis of rainfall-induced landslide in Xuanhan County[J]. Journal of Yangtze River Scientific Research Institute,2018,35(5):41 − 46. (in Chinese with English abstract)] doi: 10.11988/ckyyb.20170418

    SHAO Shan, TANG Minggao, NIE Bingqi, et al. Spatial development law and sensitivity analysis of rainfall-induced landslide in Xuanhan County[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(5): 41 − 46. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170418

    [26]

    刘文,余天彬,王猛,等. 四川宜宾市地质灾害隐患与地层岩性-地质构造关系分析[J]. 中国地质灾害与防治学报,2023,34(3):118 − 126. [LIU Wen,YU Tianbin,WANG Meng,et al. Analysis on the relationship between geological hazard and lithology,geological structure in Yibin City of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(3):118 − 126. (in Chinese with English abstract)]

    LIU Wen, YU Tianbin, WANG Meng, et al. Analysis on the relationship between geological hazard and lithology, geological structure in Yibin City of Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(3): 118 − 126. (in Chinese with English abstract)

    [27]

    豆红强,简文彬,王浩,等. 高植被覆盖区台风暴雨型滑坡成灾机制及预警模型研究综述[J]. 自然灾害学报,2023,32(2):1 − 15. [DOU Hongqiang,JIAN Wenbin,WANG Hao,et al Summary of research on disaster mechanism and early warning model of typhoon rain landslide in high vegetation coverage area[J] Journal of Natural Disasters,2023,32 (2):1 − 15. (in Chinese with English abstract)]

    DOU Hongqiang, JIAN Wenbin, WANG Hao, et al Summary of research on disaster mechanism and early warning model of typhoon rain landslide in high vegetation coverage area[J] Journal of Natural Disasters, 2023, 32 (2): 1 − 15. (in Chinese with English abstract)

  • 加载中

(11)

(7)

计量
  • 文章访问数:  20
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-11-07
修回日期:  2024-01-10
录用日期:  2025-03-03
刊出日期:  2025-04-25

目录