Analysis of the main controlling factors of weathering rates in Yungang Grottoes sandstones
-
摘要:
分析岩石风化速率的变化特征与主控因子是进行石质文物保护工作的基础工作。文章以云冈石窟砂岩为研究对象,将裂隙宽度扩展速率、石窟立柱倾斜角度变化速率、石窟洞门沉降变化速率作为表征石窟砂岩风化速率的定量指标,使用因子分析方法研究了主要环境因素(壁温、环境温度、环境湿度、气压、风速、积雨量)对石窟砂岩风化速率的影响,使用多元线性回归方法得到了影响石窟风化速率的主控因子。结果表明:对裂隙宽度扩展速率来说,夏季是环境湿度、壁温、积雨量影响最大的季节,春季是环境温度、风速影响最大的季节,主控因子是湿度;对石窟立柱风化速率来说,夏季时壁温、环境温度、环境湿度、气压、风速、积雨量的影响最大,其他季节时影响较小,主控因子是壁温;对石窟洞门风化速率来说,夏季时壁温、环境温度、环境湿度、积雨量影响最大,春季时气压、风速影响最大,主控因子是环境湿度。文章结果对砂岩风化速率分析与石窟文物保护具有一定的参考价值。
Abstract:Analyzing the weathering rates and their main environmental controlling factors is fundamental in conserving rocky relics. In this study, using the sandstones of the Yungang Grottoes as a case study, the rock weathering rates were quantitatively expressed by the expansion rates of crack widths, changes in the column inclination angles and door settlements. Factor analysis was employed to explore the influences of environmental factors, including wall temperature, ambient temperature, ambient humidity, air pressure, wind speed, and accumulated rainfall, on the weathering rates of these sandstones. Multivariate linear regression techniques were subsequently used to identify the main controlling factors affecting these weathering rates. It was found that ambient humidity, wall temperature, and accumulated rainfall have the greatest influences on the expansion rates of crack widths during summer, while ambient temperature and wind speed are more influential in spring, with environmental humidity as the main controlling factor. For the changes in column inclination angles, wall temperature, ambient temperature, ambient humidity, air pressure, wind speed, and accumulated rainfall exert the greatest impacts in the summer, with smaller effects in other seasons, and wall temperature acting as the controlling factor. Regarding the change rates in door settlement, wall temperature, ambient temperature, ambient humidity, and accumulated rainfall have the most substantial effects in the summer, while air pressure and wind speed are more influential in spring, with environmental humidity again being the main controlling factor. These findings may provide useful references for both the analysis of weathering rates and the conservation of the grottoes.
-
Key words:
- Yungang Grottoes /
- weathering rate /
- environmental conditions /
- main controlling factors
-
-
表 1 环境影响因子的KMO度量值和显著性水平p
Table 1. KMO measures and significance levels (p-values) for environmental factors
石窟编号 KMO p 9 0.93 0.002 10 0.95 0.006 12 0.92 0.004 13 0.90 0.001 25 0.88 0.003 表 2 不同洞窟裂隙处环境因子的载荷值
Table 2. Loadings of environmental factors on fissures in different caves
石窟编号 公共因子 X1 X2 X3 X4 X5 X6 9 F1 0.82 0.32 0.91 0.25 0.47 0.75 F2 0.39 0.84 0.33 0.21 0.77 0.20 F3 0.36 0.31 0.54 0.75 0.25 0.57 10 F1 0.84 0.49 0.90 0.22 0.46 0.75 F2 0.39 0.92 0.29 0.37 0.79 0.16 F3 0.46 0.32 0.20 0.82 0.23 0.19 12 F1 0.85 0.41 0.89 0.25 0.36 0.71 F2 0.39 0.82 0.34 0.31 0.78 0.19 F3 0.46 0.38 0.24 0.71 0.22 0.26 13 F1 0.75 0.49 0.92 0.23 0.31 0.79 F2 0.41 0.89 0.15 0.21 0.72 0.13 F3 0.48 0.41 0.19 0.9 0.16 0.09 25 F1 0.82 0.44 0.86 0.26 0.36 0.77 F2 0.32 0.75 0.29 0.51 0.68 0.16 F3 0.36 0.49 0.17 0.66 0.19 0.24 表 3 不同洞窟公共因子特征值与方差贡献率
Table 3. Eigenvalues and variance contributions of common factors in different caves
石窟
编号公共
因子载荷平方和 旋转载荷平方和 合计 方差/% 累计值/% 合计 方差/% 累计值/% 9 F1 2.81 40.37 40.37 2.78 39.94 39.94 F2 1.71 24.57 64.94 1.52 21.84 61.78 F3 1.42 20.40 85.34 1.64 23.56 85.34 10 F1 3.87 39.33 39.33 3.53 35.91 35.91 F2 2.67 27.15 66.48 2.89 29.36 65.27 F3 2.06 20.94 87.42 2.18 22.15 87.42 12 F1 3.56 40.98 40.98 3.23 37.18 37.18 F2 2.45 28.21 69.19 2.12 24.41 61.59 F3 1.32 15.2 84.39 1.98 22.8 84.38 13 F1 2.81 40.25 40.25 2.78 39.74 39.74 F2 1.71 24.49 64.74 1.52 21.82 61.56 F3 1.42 20.33 85.07 1.64 23.51 85.07 25 F1 3.71 43.95 43.95 3.29 38.92 38.92 F2 2.28 27.01 70.97 2.15 25.47 64.39 F3 1.02 12.08 83.05 1.57 18.66 83.05 表 4 第9窟裂隙扩展速率的公共因子得分
Table 4. Scores of common factors for fissure expansion rates in Cave 9
月 F1 F2 F3 F 数值 排名 数值 排名 数值 排名 数值 排名 1 0.17 12 0.31 6 0.06 12 0.22 12 2 0.36 9 0.48 2 0.14 9 0.67 9 3 0.47 8 0.54 1 0.15 7 0.69 8 4 0.62 6 0.42 3 0.19 6 0.83 6 5 0.76 5 0.39 4 0.23 4 0.81 5 6 1.02 2 0.36 5 0.26 1 1.37 2 7 1.34 1 0.22 8 0.25 2 1.56 1 8 0.98 3 0.11 11 0.23 3 1.23 3 9 0.84 4 0.16 9 0.20 5 1.06 4 10 0.59 7 0.06 12 0.15 8 0.70 7 11 0.29 10 0.13 10 0.09 10 0.41 10 12 0.20 11 0.26 7 0.08 11 0.34 11 总和 7.64 3.44 2.03 9.89 表 5 裂隙宽度扩展速率与环境参数的回归关系
Table 5. Regression relationships between environmental parameters and fissure expansion rates
石窟编号 回归关系式 R2 9 $ {v_\omega } = 0.40X_2' + 0.54X_3' + 0.10X_4' - 0.116 $ 0.83 10 $ {v_\omega } = 0.34X_2' + 0.66X_3' + 0.16X_4' + 0.084 $ 0.90 12 $ {v_\omega } = 0.39X_2' + 0.68X_3' + 0.19X_4' + 0.035 $ 0.86 13 $ {v_\omega } = 0.46X_2' + 0.62X_3' + 0.08X_4' - 0.091 $ 0.82 25 $ {v_\omega } = 0.46X_2' + 0.62X_3' + 0.08X_4' - 0.091 $ 0.89 表 6 第9窟立柱倾斜角度变化速率的公共因子得分
Table 6. Scores of common factors for changes in column tilt angles in Cave 9
月 F1 F2 F3 F 数值 排名 数值 排名 数值 排名 数值 排名 1 0.12 12 0.17 10 0.15 11 0.25 12 2 0.34 9 0.30 9 0.21 9 0.61 9 3 0.37 8 0.31 8 0.27 7 0.68 8 4 0.67 7 0.42 7 0.38 5 1.08 7 5 0.95 6 0.57 2 0.39 4 1.38 6 6 1.58 2 0.49 4 0.48 2 2.00 2 7 2.05 1 0.64 1 0.52 1 2.46 1 8 1.38 3 0.43 11 0.43 3 1.80 3 9 1.12 4 0.51 9 0.37 6 1.53 4 10 1.06 5 0.48 12 0.24 8 1.42 5 11 0.30 10 0.13 10 0.19 10 0.46 10 12 0.13 11 0.10 7 0.13 12 0.30 11 总和 10.07 4.55 3.76 13.97 表 7 立柱倾斜角度变化速率与环境参数的回归关系
Table 7. Regression relationships between changes in column tilt angles and environmental parameters
石窟编号 回归关系式 R2 9 ${v_\theta } = 0.77X_1' + 0.30X_3' + 0.13X_5' + 0.036$ 0.95 10 ${v_\theta } = 0.64X_1' + 0.26X_3' + 0.24X_5' - 0.051$ 0.90 12 ${v_\theta } = 0.59X_1' + 0.42X_3' + 0.26X_5' + 0.113$ 0.93 13 ${v_\theta } = 0.68X_1' + 0.33X_3' + 0.24X_5' - 0.102$ 0.96 25 ${v_\theta } = 0.71X_1' + 0.25X_3' + 0.17X_5' - 0.068$ 0.95 表 8 第9窟洞门沉降变化速率的公共因子得分
Table 8. Scores of common factors for the settlement rate of the cave door in Cave 9
月 F1 F2 F3 F 数值 排名 数值 排名 数值 排名 数值 排名 1 0.15 12 0.11 12 0.35 5 0.26 12 2 0.43 10 0.26 9 0.42 2 0.56 10 3 0.49 9 0.28 8 0.49 1 0.62 9 4 0.68 6 0.35 6 0.39 3 0.82 6 5 0.84 5 0.39 5 0.35 4 0.87 5 6 1.01 2 0.48 2 0.31 6 1.26 2 7 1.23 1 0.58 1 0.24 8 1.35 1 8 0.92 3 0.43 3 0.13 11 1.06 3 9 0.91 4 0.42 4 0.15 10 0.99 4 10 0.65 7 0.34 7 0.06 12 0.8 7 11 0.62 8 0.19 10 0.21 9 0.75 8 12 0.22 11 0.16 11 0.3 7 0.47 11 总和 8.15 3.99 3.40 9.81 表 9 洞门沉降变化速率与环境参数的回归关系
Table 9. Regression relationships between environmental parameters and the settlement rate of the cave door
石窟编号 回归关系式 R2 9 ${v_s} = 0.29X_2' + 0.56X_3' + 0.14X_4' + 0.125$ 0.86 10 $ {v_s} = 0.38X_2' + 0.73X_3' + 0.04X_4' - 0.034 $ 0.90 12 ${v_s} = 0.21X_2' + 0.62X_3' + 0.19X_4' + 0.095$ 0.89 13 $ {v_s} = 0.49X_2' + 0.65X_3' + 0.15X_4' - 0.152 $ 0.92 25 $ {v_s} = 0.40X_2' + 0.59X_3' + 0.17X_4' - 0.128 $ 0.84 -
[1] 张博,崔惠萍,裴强强,等. 不同开放环境下北石窟洞窟温湿度变化特征[J]. 岩石力学与工程学报,2021,40(增刊1):2834 − 2840. [ZHANG Bo,CUI Huiping,PEI Qiangqiang,et al. Variation characteristics of temperature and humidity in North Grottoes under different opening regulation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 1):2834 − 2840. (in Chinese with English abstract)]
ZHANG Bo, CUI Huiping, PEI Qiangqiang, et al. Variation characteristics of temperature and humidity in North Grottoes under different opening regulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 1): 2834 − 2840. (in Chinese with English abstract)
[2] WANG Xusheng,WAN Li,HUANG Jizhong,et al. Variable temperature and moisture conditions in Yungang Grottoes,China,and their impacts on ancient sculptures[J]. Environmental Earth Sciences,2014,72(8):3079 − 3088. doi: 10.1007/s12665-014-3213-x
[3] 汪军,徐金明,龚明权,等. 基于扫描电镜图像和微观渗流模型的云冈石窟砂岩风化特征分析[J]. 水文地质工程地质,2021,48(6):122 − 130. [WANG Jun,XU Jinming,GONG Mingquan,et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology,2021,48(6):122 − 130. (in Chinese with English abstract)]
WANG Jun, XU Jinming, GONG Mingquan, et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 122 − 130. (in Chinese with English abstract)
[4] 王莹莹,徐金明,黄继忠. 基于 CT 影像的砂岩文物结构特征分析[J]. 中国地质灾害与防治学报,2020,31(1):127 − 134. [WANG Yingying,XU Jinming,HUANG Jizhong. Analysis on structural features of sandstones relics using digital image technology based on CT images[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):127 − 134. (in Chinese with English abstract)]
WANG Yingying, XU Jinming, HUANG Jizhong. Analysis on structural features of sandstones relics using digital image technology based on CT images[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 127 − 134. (in Chinese with English abstract)
[5] 刘逸堃,高东亮,马朝龙,等. 基于时间序列分析的龙门石窟奉先寺微环境的实时监测与评估[J]. 西北大学学报(自然科学版),2021,51(5):787 − 796. [LIU Yikun,GAO Dongliang,MA Zhaolong,et al. Monitoring and assessment of the microclimate of Fengxian temple in Longmen Grottoes based on time series analysis[J]. Journal of Northwest University (Natural Science Edition),2021,51(5):787 − 796. (in Chinese with English abstract)]
LIU Yikun, GAO Dongliang, MA Zhaolong, et al. Monitoring and assessment of the microclimate of Fengxian temple in Longmen Grottoes based on time series analysis[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(5): 787 − 796. (in Chinese with English abstract)
[6] ZHENG Leilei,FU Xuezhi,CHU Fei. Grey incidence analyze of environment monitoring data and research on the disease prevention measures of Longmen Grottoes[J]. IOP Conference Series:Earth and Environmental Science,2018,153(6):1 − 8.
[7] LI Hongshou,WANG Wanfu,ZHAN Hongtao,et al. Water in the Mogao Grottoes,China:Where it comes from and how it is driven[J]. Journal of Arid Land,2015,7(1):37 − 45. doi: 10.1007/s40333-014-0072-y
[8] 王彦武,韩增阳,郭青林,等. 甘肃庆阳北石窟寺水环境特征研究[J]. 西北大学学报(自然科学版),2021,51(3):360 − 369. [WANG Yanwu,HAN Zengyang,GUO Qinglin,et al. Research on the characteristics of water environment in beishiku temple,Qingyang City,Gansu Province[J]. Journal of Northwest University (Natural Science Edition),2021,51(3):360 − 369. (in Chinese with English abstract)]
WANG Yanwu, HAN Zengyang, GUO Qinglin, et al. Research on the characteristics of water environment in beishiku temple, Qingyang City, Gansu Province[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 360 − 369. (in Chinese with English abstract)
[9] SANKEY J B,EAST A,FAIRLEY H C,et al. Archaeological sites in Grand Canyon National Park along the Colorado River are eroding owing to six decades of Glen Canyon Dam operations[J]. Journal of Environmental Management,2023,342:118036. doi: 10.1016/j.jenvman.2023.118036
[10] GRØNTOFT T,CASSAR J. An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta[J]. Environmental Earth Sciences,2020,79:1 − 16. doi: 10.1007/s12665-019-8746-6
[11] WARAGAI T,HIKI Y. Influence of microclimate on the directional dependence of sandstone pillar weathering in Angkor Wat temple,Cambodia[J]. Progress in Earth and Planetary Science,2019,6(1):10. doi: 10.1186/s40645-019-0254-5
[12] LI Hongshou,WANG Wanfu,ZHAN Hongtao,et al. The effects of atmospheric moisture on the mural paintings of the Mogao Grottoes[J]. Studies in Conservation,2017,62(4):229 − 239. doi: 10.1080/00393630.2016.1148916
[13] LIU Hongli,WANG Xudong,GUO Qinglin,et al. Experimental investigation on the correlation between rainfall infiltration and the deterioration of wall paintings at Mogao Grottoes,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(3):1199 − 1207. doi: 10.1007/s10064-019-01645-5
[14] 刘兵,郑坤,王超林,等. 冻融环境下基于声发射的砂岩各向异性劣化机理分析[J]. 中国地质灾害与防治学报,2024,35(1):132 − 142. [LIU Bing,ZHENG Kun,WANG Chaolin,et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):132 − 142. (in Chinese with English abstract)]
LIU Bing, ZHENG Kun, WANG Chaolin, et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 132 − 142. (in Chinese with English abstract)
[15] 周宝发,郎嘉琛,闫增峰,等. 强降雨天气下麦积山石窟第126窟自然通风规律研究[J]. 干旱区资源与环境,2021,35(10):155 − 160. [ZHOU Baofa,LANG Jiachen,YAN Zengfeng,et al. Natural ventilation law for the Cave 126 under heavy rainfall in Maiji Mountain Grottoes[J]. Journal of Arid Land Resources and Environment,2021,35(10):155 − 160. (in Chinese with English abstract)]
ZHOU Baofa, LANG Jiachen, YAN Zengfeng, et al. Natural ventilation law for the Cave 126 under heavy rainfall in Maiji Mountain Grottoes[J]. Journal of Arid Land Resources and Environment, 2021, 35(10): 155 − 160. (in Chinese with English abstract)
[16] D’AGOSTINO D,CONGEDO P M,CATALDO R. Computational fluid dynamics (CFD) modeling of microclimate for salts crystallization control and artworks conservation[J]. Journal of Cultural Heritage,2014,15(4):448 − 457. doi: 10.1016/j.culher.2013.10.002
[17] 汤永净,夏昶,黄宏伟,等. 基于图片信息的“同济” 石刻风化速率分析[J]. 结构工程师,2020,36(4):39 − 45. [TANG Yongjing,XIA Chang,HUANG Hongwei,et al. The analysis of “Tongji” stone inscription weathering rate based on images[J]. Structural Engineers,2020,36(4):39 − 45. (in Chinese with English abstract)] doi: 10.3969/j.issn.1005-0159.2020.04.006
TANG Yongjing, XIA Chang, HUANG Hongwei, et al. The analysis of “Tongji” stone inscription weathering rate based on images[J]. Structural Engineers, 2020, 36(4): 39 − 45. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-0159.2020.04.006
[18] 高文浩,付金霞,张宝利,等. 砒砂岩风化速率及其主要影响因素分析[J]. 人民黄河,2023,45(9):125 − 128. [GAO Wenhao,FU Jinxia,ZHANG Baoli,et al. Analysis of weathering rate and main influencing factors of pisha sandstone[J]. Yellow River,2023,45(9):125 − 128. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1379.2023.09.021
GAO Wenhao, FU Jinxia, ZHANG Baoli, et al. Analysis of weathering rate and main influencing factors of pisha sandstone[J]. Yellow River, 2023, 45(9): 125 − 128. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2023.09.021
[19] 彭弋倪,陈旸,李石磊. 辽河流域岩石风化速率及碳汇计算[J]. 地球科学与环境学报,2017,39(3):439 − 449. [PENG Yini,CHEN Yang,LI Shilei. Rock weathering rates and carbon sink calculation in Liaohe River watershed,China[J]. Journal of Earth Sciences and Environment,2017,39(3):439 − 449. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-6561.2017.03.012
PENG Yini, CHEN Yang, LI Shilei. Rock weathering rates and carbon sink calculation in Liaohe River watershed, China[J]. Journal of Earth Sciences and Environment, 2017, 39(3): 439 − 449. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2017.03.012
[20] 张鸿,周权平,姜月华,等. 长江干流水化学成因与风化过程CO2消耗通量解析[J]. 水文地质工程地质,2022,49(1):30 − 40. [ZHANG Hong,ZHOU Quanping,JIANG Yuehua,et al. Hydrochemical origins and weathering-controlled CO2 consumption rates in the mainstream of the Yangtze River[J]. Hydrogeology & Engineering Geology,2022,49(1):30 − 40. (in Chinese with English abstract)]
ZHANG Hong, ZHOU Quanping, JIANG Yuehua, et al. Hydrochemical origins and weathering-controlled CO2 consumption rates in the mainstream of the Yangtze River[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 30 − 40. (in Chinese with English abstract)
-