中国地质环境监测院
中国地质灾害防治工程行业协会
主办

云冈石窟砂岩风化速率主控因子分析

索楠, 徐金明, 卢宝明. 云冈石窟砂岩风化速率主控因子分析[J]. 中国地质灾害与防治学报, 2025, 36(3): 68-75. doi: 10.16031/j.cnki.issn.1003-8035.202401042
引用本文: 索楠, 徐金明, 卢宝明. 云冈石窟砂岩风化速率主控因子分析[J]. 中国地质灾害与防治学报, 2025, 36(3): 68-75. doi: 10.16031/j.cnki.issn.1003-8035.202401042
SUO Nan, XU Jinming, LU Baoming. Analysis of the main controlling factors of weathering rates in Yungang Grottoes sandstones[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 68-75. doi: 10.16031/j.cnki.issn.1003-8035.202401042
Citation: SUO Nan, XU Jinming, LU Baoming. Analysis of the main controlling factors of weathering rates in Yungang Grottoes sandstones[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(3): 68-75. doi: 10.16031/j.cnki.issn.1003-8035.202401042

云冈石窟砂岩风化速率主控因子分析

  • 基金项目: 国家重点研发计划项目(2019YFC1520500);山西省重点研发计划项目(201803D31080)
详细信息
    作者简介: 索 楠(1997—),男,山西大同人,土木水利专业,硕士研究生,从事文物保护机理研究。E-mail: suonan24@163.com
    通讯作者: 徐金明(1963—),男,江苏南通人,博士,教授,博士生导师,主要从事工程地质的教学与科研工作。E-mail: xjming@163.com
  • 中图分类号: P694

Analysis of the main controlling factors of weathering rates in Yungang Grottoes sandstones

More Information
  • 分析岩石风化速率的变化特征与主控因子是进行石质文物保护工作的基础工作。文章以云冈石窟砂岩为研究对象,将裂隙宽度扩展速率、石窟立柱倾斜角度变化速率、石窟洞门沉降变化速率作为表征石窟砂岩风化速率的定量指标,使用因子分析方法研究了主要环境因素(壁温、环境温度、环境湿度、气压、风速、积雨量)对石窟砂岩风化速率的影响,使用多元线性回归方法得到了影响石窟风化速率的主控因子。结果表明:对裂隙宽度扩展速率来说,夏季是环境湿度、壁温、积雨量影响最大的季节,春季是环境温度、风速影响最大的季节,主控因子是湿度;对石窟立柱风化速率来说,夏季时壁温、环境温度、环境湿度、气压、风速、积雨量的影响最大,其他季节时影响较小,主控因子是壁温;对石窟洞门风化速率来说,夏季时壁温、环境温度、环境湿度、积雨量影响最大,春季时气压、风速影响最大,主控因子是环境湿度。文章结果对砂岩风化速率分析与石窟文物保护具有一定的参考价值。

  • 加载中
  • 图 1  壁温测试与区域温度监测的外观情况

    Figure 1. 

    图 2  不同石窟裂隙宽度扩展速率随时间的变化

    Figure 2. 

    图 3  第9窟立柱柱体倾斜角度变化速率随时间的变化

    Figure 3. 

    图 4  第9窟洞门沉降变化速率随时间的变化

    Figure 4. 

    表 1  环境影响因子的KMO度量值和显著性水平p

    Table 1.  KMO measures and significance levels (p-values) for environmental factors

    石窟编号 KMO p
    9 0.93 0.002
    10 0.95 0.006
    12 0.92 0.004
    13 0.90 0.001
    25 0.88 0.003
    下载: 导出CSV

    表 2  不同洞窟裂隙处环境因子的载荷值

    Table 2.  Loadings of environmental factors on fissures in different caves

    石窟编号 公共因子 X1 X2 X3 X4 X5 X6
    9 F1 0.82 0.32 0.91 0.25 0.47 0.75
    F2 0.39 0.84 0.33 0.21 0.77 0.20
    F3 0.36 0.31 0.54 0.75 0.25 0.57
    10 F1 0.84 0.49 0.90 0.22 0.46 0.75
    F2 0.39 0.92 0.29 0.37 0.79 0.16
    F3 0.46 0.32 0.20 0.82 0.23 0.19
    12 F1 0.85 0.41 0.89 0.25 0.36 0.71
    F2 0.39 0.82 0.34 0.31 0.78 0.19
    F3 0.46 0.38 0.24 0.71 0.22 0.26
    13 F1 0.75 0.49 0.92 0.23 0.31 0.79
    F2 0.41 0.89 0.15 0.21 0.72 0.13
    F3 0.48 0.41 0.19 0.9 0.16 0.09
    25 F1 0.82 0.44 0.86 0.26 0.36 0.77
    F2 0.32 0.75 0.29 0.51 0.68 0.16
    F3 0.36 0.49 0.17 0.66 0.19 0.24
    下载: 导出CSV

    表 3  不同洞窟公共因子特征值与方差贡献率

    Table 3.  Eigenvalues and variance contributions of common factors in different caves

    石窟
    编号
    公共
    因子
    载荷平方和 旋转载荷平方和
    合计 方差/% 累计值/% 合计 方差/% 累计值/%
    9 F1 2.81 40.37 40.37 2.78 39.94 39.94
    F2 1.71 24.57 64.94 1.52 21.84 61.78
    F3 1.42 20.40 85.34 1.64 23.56 85.34
    10 F1 3.87 39.33 39.33 3.53 35.91 35.91
    F2 2.67 27.15 66.48 2.89 29.36 65.27
    F3 2.06 20.94 87.42 2.18 22.15 87.42
    12 F1 3.56 40.98 40.98 3.23 37.18 37.18
    F2 2.45 28.21 69.19 2.12 24.41 61.59
    F3 1.32 15.2 84.39 1.98 22.8 84.38
    13 F1 2.81 40.25 40.25 2.78 39.74 39.74
    F2 1.71 24.49 64.74 1.52 21.82 61.56
    F3 1.42 20.33 85.07 1.64 23.51 85.07
    25 F1 3.71 43.95 43.95 3.29 38.92 38.92
    F2 2.28 27.01 70.97 2.15 25.47 64.39
    F3 1.02 12.08 83.05 1.57 18.66 83.05
    下载: 导出CSV

    表 4  第9窟裂隙扩展速率的公共因子得分

    Table 4.  Scores of common factors for fissure expansion rates in Cave 9

    F1 F2 F3 F
    数值 排名 数值 排名 数值 排名 数值 排名
    10.17120.3160.06120.2212
    20.3690.4820.1490.679
    30.4780.5410.1570.698
    40.6260.4230.1960.836
    50.7650.3940.2340.815
    61.0220.3650.2611.372
    71.3410.2280.2521.561
    80.9830.11110.2331.233
    90.8440.1690.2051.064
    100.5970.06120.1580.707
    110.29100.13100.09100.4110
    120.20110.2670.08110.3411
    总和7.643.442.039.89
    下载: 导出CSV

    表 5  裂隙宽度扩展速率与环境参数的回归关系

    Table 5.  Regression relationships between environmental parameters and fissure expansion rates

    石窟编号 回归关系式 R2
    9 $ {v_\omega } = 0.40X_2' + 0.54X_3' + 0.10X_4' - 0.116 $ 0.83
    10 $ {v_\omega } = 0.34X_2' + 0.66X_3' + 0.16X_4' + 0.084 $ 0.90
    12 $ {v_\omega } = 0.39X_2' + 0.68X_3' + 0.19X_4' + 0.035 $ 0.86
    13 $ {v_\omega } = 0.46X_2' + 0.62X_3' + 0.08X_4' - 0.091 $ 0.82
    25 $ {v_\omega } = 0.46X_2' + 0.62X_3' + 0.08X_4' - 0.091 $ 0.89
    下载: 导出CSV

    表 6  第9窟立柱倾斜角度变化速率的公共因子得分

    Table 6.  Scores of common factors for changes in column tilt angles in Cave 9

    F1 F2 F3 F
    数值 排名 数值 排名 数值 排名 数值 排名
    10.12120.17100.15110.2512
    20.3490.3090.2190.619
    30.3780.3180.2770.688
    40.6770.4270.3851.087
    50.9560.5720.3941.386
    61.5820.4940.4822.002
    72.0510.6410.5212.461
    81.3830.43110.4331.803
    91.1240.5190.3761.534
    101.0650.48120.2481.425
    110.30100.13100.19100.4610
    120.13110.1070.13120.3011
    总和10.074.553.7613.97
    下载: 导出CSV

    表 7  立柱倾斜角度变化速率与环境参数的回归关系

    Table 7.  Regression relationships between changes in column tilt angles and environmental parameters

    石窟编号回归关系式R2
    9${v_\theta } = 0.77X_1' + 0.30X_3' + 0.13X_5' + 0.036$0.95
    10${v_\theta } = 0.64X_1' + 0.26X_3' + 0.24X_5' - 0.051$0.90
    12${v_\theta } = 0.59X_1' + 0.42X_3' + 0.26X_5' + 0.113$0.93
    13${v_\theta } = 0.68X_1' + 0.33X_3' + 0.24X_5' - 0.102$0.96
    25${v_\theta } = 0.71X_1' + 0.25X_3' + 0.17X_5' - 0.068$0.95
    下载: 导出CSV

    表 8  第9窟洞门沉降变化速率的公共因子得分

    Table 8.  Scores of common factors for the settlement rate of the cave door in Cave 9

    F1 F2 F3 F
    数值 排名 数值 排名 数值 排名 数值 排名
    10.15120.11120.3550.2612
    20.43100.2690.4220.5610
    30.4990.2880.4910.629
    40.6860.3560.3930.826
    50.8450.3950.3540.875
    61.0120.4820.3161.262
    71.2310.5810.2481.351
    80.9230.4330.13111.063
    90.9140.4240.15100.994
    100.6570.3470.06120.87
    110.6280.19100.2190.758
    120.22110.16110.370.4711
    总和8.153.993.409.81
    下载: 导出CSV

    表 9  洞门沉降变化速率与环境参数的回归关系

    Table 9.  Regression relationships between environmental parameters and the settlement rate of the cave door

    石窟编号 回归关系式 R2
    9 ${v_s} = 0.29X_2' + 0.56X_3' + 0.14X_4' + 0.125$ 0.86
    10 $ {v_s} = 0.38X_2' + 0.73X_3' + 0.04X_4' - 0.034 $ 0.90
    12 ${v_s} = 0.21X_2' + 0.62X_3' + 0.19X_4' + 0.095$ 0.89
    13 $ {v_s} = 0.49X_2' + 0.65X_3' + 0.15X_4' - 0.152 $ 0.92
    25 $ {v_s} = 0.40X_2' + 0.59X_3' + 0.17X_4' - 0.128 $ 0.84
    下载: 导出CSV
  • [1]

    张博,崔惠萍,裴强强,等. 不同开放环境下北石窟洞窟温湿度变化特征[J]. 岩石力学与工程学报,2021,40(增刊1):2834 − 2840. [ZHANG Bo,CUI Huiping,PEI Qiangqiang,et al. Variation characteristics of temperature and humidity in North Grottoes under different opening regulation[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 1):2834 − 2840. (in Chinese with English abstract)]

    ZHANG Bo, CUI Huiping, PEI Qiangqiang, et al. Variation characteristics of temperature and humidity in North Grottoes under different opening regulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 1): 2834 − 2840. (in Chinese with English abstract)

    [2]

    WANG Xusheng,WAN Li,HUANG Jizhong,et al. Variable temperature and moisture conditions in Yungang Grottoes,China,and their impacts on ancient sculptures[J]. Environmental Earth Sciences,2014,72(8):3079 − 3088. doi: 10.1007/s12665-014-3213-x

    [3]

    汪军,徐金明,龚明权,等. 基于扫描电镜图像和微观渗流模型的云冈石窟砂岩风化特征分析[J]. 水文地质工程地质,2021,48(6):122 − 130. [WANG Jun,XU Jinming,GONG Mingquan,et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology,2021,48(6):122 − 130. (in Chinese with English abstract)]

    WANG Jun, XU Jinming, GONG Mingquan, et al. Investigating weathering features of sandstones in the Yungang Grottoes based on SEM images and micro-scale flow model[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 122 − 130. (in Chinese with English abstract)

    [4]

    王莹莹,徐金明,黄继忠. 基于 CT 影像的砂岩文物结构特征分析[J]. 中国地质灾害与防治学报,2020,31(1):127 − 134. [WANG Yingying,XU Jinming,HUANG Jizhong. Analysis on structural features of sandstones relics using digital image technology based on CT images[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):127 − 134. (in Chinese with English abstract)]

    WANG Yingying, XU Jinming, HUANG Jizhong. Analysis on structural features of sandstones relics using digital image technology based on CT images[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 127 − 134. (in Chinese with English abstract)

    [5]

    刘逸堃,高东亮,马朝龙,等. 基于时间序列分析的龙门石窟奉先寺微环境的实时监测与评估[J]. 西北大学学报(自然科学版),2021,51(5):787 − 796. [LIU Yikun,GAO Dongliang,MA Zhaolong,et al. Monitoring and assessment of the microclimate of Fengxian temple in Longmen Grottoes based on time series analysis[J]. Journal of Northwest University (Natural Science Edition),2021,51(5):787 − 796. (in Chinese with English abstract)]

    LIU Yikun, GAO Dongliang, MA Zhaolong, et al. Monitoring and assessment of the microclimate of Fengxian temple in Longmen Grottoes based on time series analysis[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(5): 787 − 796. (in Chinese with English abstract)

    [6]

    ZHENG Leilei,FU Xuezhi,CHU Fei. Grey incidence analyze of environment monitoring data and research on the disease prevention measures of Longmen Grottoes[J]. IOP Conference Series:Earth and Environmental Science,2018,153(6):1 − 8.

    [7]

    LI Hongshou,WANG Wanfu,ZHAN Hongtao,et al. Water in the Mogao Grottoes,China:Where it comes from and how it is driven[J]. Journal of Arid Land,2015,7(1):37 − 45. doi: 10.1007/s40333-014-0072-y

    [8]

    王彦武,韩增阳,郭青林,等. 甘肃庆阳北石窟寺水环境特征研究[J]. 西北大学学报(自然科学版),2021,51(3):360 − 369. [WANG Yanwu,HAN Zengyang,GUO Qinglin,et al. Research on the characteristics of water environment in beishiku temple,Qingyang City,Gansu Province[J]. Journal of Northwest University (Natural Science Edition),2021,51(3):360 − 369. (in Chinese with English abstract)]

    WANG Yanwu, HAN Zengyang, GUO Qinglin, et al. Research on the characteristics of water environment in beishiku temple, Qingyang City, Gansu Province[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 360 − 369. (in Chinese with English abstract)

    [9]

    SANKEY J B,EAST A,FAIRLEY H C,et al. Archaeological sites in Grand Canyon National Park along the Colorado River are eroding owing to six decades of Glen Canyon Dam operations[J]. Journal of Environmental Management,2023,342:118036. doi: 10.1016/j.jenvman.2023.118036

    [10]

    GRØNTOFT T,CASSAR J. An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta[J]. Environmental Earth Sciences,2020,79:1 − 16. doi: 10.1007/s12665-019-8746-6

    [11]

    WARAGAI T,HIKI Y. Influence of microclimate on the directional dependence of sandstone pillar weathering in Angkor Wat temple,Cambodia[J]. Progress in Earth and Planetary Science,2019,6(1):10. doi: 10.1186/s40645-019-0254-5

    [12]

    LI Hongshou,WANG Wanfu,ZHAN Hongtao,et al. The effects of atmospheric moisture on the mural paintings of the Mogao Grottoes[J]. Studies in Conservation,2017,62(4):229 − 239. doi: 10.1080/00393630.2016.1148916

    [13]

    LIU Hongli,WANG Xudong,GUO Qinglin,et al. Experimental investigation on the correlation between rainfall infiltration and the deterioration of wall paintings at Mogao Grottoes,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(3):1199 − 1207. doi: 10.1007/s10064-019-01645-5

    [14]

    刘兵,郑坤,王超林,等. 冻融环境下基于声发射的砂岩各向异性劣化机理分析[J]. 中国地质灾害与防治学报,2024,35(1):132 − 142. [LIU Bing,ZHENG Kun,WANG Chaolin,et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control,2024,35(1):132 − 142. (in Chinese with English abstract)]

    LIU Bing, ZHENG Kun, WANG Chaolin, et al. Mechanism analysis on anisotropic degradation of sandstone in freeze thaw environment based acoustic emission[J]. The Chinese Journal of Geological Hazard and Control, 2024, 35(1): 132 − 142. (in Chinese with English abstract)

    [15]

    周宝发,郎嘉琛,闫增峰,等. 强降雨天气下麦积山石窟第126窟自然通风规律研究[J]. 干旱区资源与环境,2021,35(10):155 − 160. [ZHOU Baofa,LANG Jiachen,YAN Zengfeng,et al. Natural ventilation law for the Cave 126 under heavy rainfall in Maiji Mountain Grottoes[J]. Journal of Arid Land Resources and Environment,2021,35(10):155 − 160. (in Chinese with English abstract)]

    ZHOU Baofa, LANG Jiachen, YAN Zengfeng, et al. Natural ventilation law for the Cave 126 under heavy rainfall in Maiji Mountain Grottoes[J]. Journal of Arid Land Resources and Environment, 2021, 35(10): 155 − 160. (in Chinese with English abstract)

    [16]

    D’AGOSTINO D,CONGEDO P M,CATALDO R. Computational fluid dynamics (CFD) modeling of microclimate for salts crystallization control and artworks conservation[J]. Journal of Cultural Heritage,2014,15(4):448 − 457. doi: 10.1016/j.culher.2013.10.002

    [17]

    汤永净,夏昶,黄宏伟,等. 基于图片信息的“同济” 石刻风化速率分析[J]. 结构工程师,2020,36(4):39 − 45. [TANG Yongjing,XIA Chang,HUANG Hongwei,et al. The analysis of “Tongji” stone inscription weathering rate based on images[J]. Structural Engineers,2020,36(4):39 − 45. (in Chinese with English abstract)] doi: 10.3969/j.issn.1005-0159.2020.04.006

    TANG Yongjing, XIA Chang, HUANG Hongwei, et al. The analysis of “Tongji” stone inscription weathering rate based on images[J]. Structural Engineers, 2020, 36(4): 39 − 45. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-0159.2020.04.006

    [18]

    高文浩,付金霞,张宝利,等. 砒砂岩风化速率及其主要影响因素分析[J]. 人民黄河,2023,45(9):125 − 128. [GAO Wenhao,FU Jinxia,ZHANG Baoli,et al. Analysis of weathering rate and main influencing factors of pisha sandstone[J]. Yellow River,2023,45(9):125 − 128. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1379.2023.09.021

    GAO Wenhao, FU Jinxia, ZHANG Baoli, et al. Analysis of weathering rate and main influencing factors of pisha sandstone[J]. Yellow River, 2023, 45(9): 125 − 128. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2023.09.021

    [19]

    彭弋倪,陈旸,李石磊. 辽河流域岩石风化速率及碳汇计算[J]. 地球科学与环境学报,2017,39(3):439 − 449. [PENG Yini,CHEN Yang,LI Shilei. Rock weathering rates and carbon sink calculation in Liaohe River watershed,China[J]. Journal of Earth Sciences and Environment,2017,39(3):439 − 449. (in Chinese with English abstract)] doi: 10.3969/j.issn.1672-6561.2017.03.012

    PENG Yini, CHEN Yang, LI Shilei. Rock weathering rates and carbon sink calculation in Liaohe River watershed, China[J]. Journal of Earth Sciences and Environment, 2017, 39(3): 439 − 449. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2017.03.012

    [20]

    张鸿,周权平,姜月华,等. 长江干流水化学成因与风化过程CO2消耗通量解析[J]. 水文地质工程地质,2022,49(1):30 − 40. [ZHANG Hong,ZHOU Quanping,JIANG Yuehua,et al. Hydrochemical origins and weathering-controlled CO2 consumption rates in the mainstream of the Yangtze River[J]. Hydrogeology & Engineering Geology,2022,49(1):30 − 40. (in Chinese with English abstract)]

    ZHANG Hong, ZHOU Quanping, JIANG Yuehua, et al. Hydrochemical origins and weathering-controlled CO2 consumption rates in the mainstream of the Yangtze River[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 30 − 40. (in Chinese with English abstract)

  • 加载中

(4)

(9)

计量
  • 文章访问数:  15
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2024-01-29
修回日期:  2024-05-01
录用日期:  2025-03-11
刊出日期:  2025-06-25

目录