CARBON STABLE ISOTOPES OF AUTHIGENIC CARBONATES AND BENTHIC FORAMINIFERA RECOVERED FROM SITES U1328 AND U1329 AS CO-INDICATORS OF EPISODIC METHANE SEEP EVENTS IN THE CASCADIA MARGIN
-
摘要: 甲烷渗漏活动及其甲烷厌氧氧化(AOM)在自生碳酸盐岩沉淀的同时,也通过影响孔隙水溶解无机碳(DIC)进而影响着周围环境中底栖有孔虫,以往的文章鲜有报道二者的耦合响应。研究开展了综合大洋钻探计划IODP 311航次两个钻孔(1328和1329)中获得的自生碳酸盐岩和底栖有孔虫(Uvigerina peregrina)同位素研究,发现晚更新世以来多个层位获得的自生碳酸盐岩和底栖有孔虫的稳定碳同位素变化趋势均呈现一致的负偏碳同位素特征,但是,同层位的自生碳酸盐岩碳同位素负偏程度要比底栖有孔虫大一个数量级。自生碳酸盐岩与底栖有孔虫碳同位素变化趋势的一致性表明二者对于甲烷渗漏作用有较好的共同响应。AOM作用对孔隙水中溶解无机碳(DIC)的影响可在重碳酸氢根通过局部环境的过饱和沉淀自生碳酸盐岩的同时,也能部分参与底栖有孔虫的成壳,两者在成因方面是耦合的。综合结合自生碳酸盐岩和底栖有孔虫的碳同位素特征可以避免单一载体易受后期成岩改造影响而掩盖甲烷渗漏活动的识别。Abstract: Methane seeps play a significant role in the evolution of pore water dissolved inorganic carbon (DIC) via anaerobic oxidation of methane (AOM), which could make authigenic carbonates precipitated and influence the benthic foraminifera living near seep environments. Two independent proxies involving the carbon isotopic composition of authigenic carbonates and benthic foraminifera (Uvigerina peregrina) were studied to verify the potential relationship between authigenic carbonates and foraminifera as co-indicators of episodic methane seeps during late Pleistocene and Holocene in the northern Cascadia margin's gas hydrate geo-system. Both authigenic carbonates and benthic foraminifera exhibit episodic negative carbon isotope excursions during the past 1.6 Ma at site U1328 and 8.5 Ma at site U1329. The carbon isotope excursions of benthic foraminifera coincide with those of authigenic carbonates at several methane seep stages, even though a profound carbon isotopic disequilibrium exists between the authigenic carbonates and benthic foraminifera. Methane seep-related AOM favors authigenic carbonate precipitation and also leaves imprints on the DIC that could be recorded by the calcification of benthic foraminifera. The carbon isotopic coincidence between authigenic carbonates and benthic foraminifera demonstrates that two proxies could record the same methane seep events. We combine the benthic foraminifera with authigenic minerals to reveal that the methane seep events could preclude the post-depositional alterations of the authigenic carbonates and delineate the specific history of episodic methane seep events.
-
-
[1] Suess E.Marine Cold Seeps[M]//In:Timmis K N eds. Handbook of Hydrocarbon and Lipid Microbiology. Berlin:Springer:2010:187-203.
[2] Gieskes J, Rathburn A E, Martin J B, et al.Cold seeps in Monterey Bay, California:Geochemistry of pore waters and relationship to benthic foraminiferal calcite[J]. Applied Geochemistry, 2011,26:738-746.
[3] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000,407:623-626.
[4] Borowski WS, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013,43:381-395. doi:10.1016/j.marpetgeo.2012.12.009.
[5] Joseph C, Campbell K A, Torres M E, et al. 2013. Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin:Mechanisms of formation and diagenetic signals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390:52-67.
[6] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002,297:1013-1015. doi:10.1126/science.1072502.
[7] Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J]. Geochimica et Cosmochimica Acta, 2005,69:2767-2779. doi:10.1016/j.gca.2005.01.002.
[8] Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz[J]. Sedimentary Geology, 2012,243-244:155-168.
[9] Panieri G, Camerlenghi A, Conti S, et al. Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,284:271-282.
[10] 李清, 王家生, 王晓芹, 等. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008,23:1161-1166.[LI Qing,WANG Jiasheng,WANG Xiaoqin, et al. Stable carbon isotopic response of the benthic foraminifera from IODP 311
to the marine methane hydrate geo-system[J]. Advances in Earth Science, 2008,23:1161-1166.]
[11] 李清, 王家生, 蔡峰, 等. 天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应-以IODP311航次为例[J]. 海洋地质前沿, 2011,27:29-36.[LI Qing,WANG Jiasheng,CAI Feng,et al.Carbon and oxygen stable isotopes of benthic foraminifera as possible indicators of episodic methane seeps in gas hydrate geo-system-A study from IODP Expedition 311
[J].Marine Geology Frontiers,2011,27:29-36.]
[12] Hill T M, Kennett J P and Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel, California[J]. Marine Micropaleontology, 2003, 49:123-138.
[13] Hill T M, Kennett J P, Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific[J]. Geochimica et Cosmochimica Acta, 2004,68:4619-4627.
[14] Hill T M, Kennett J P, Valentine D L, et al. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation[J]. Proceedings of the National Academy of Sciences, 2006,103:13570-13574.
[15] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000,288:128-133.
[16] Li Q, Wang J, Chen J, et al. Stable carbon isotopes of benthic foraminifers from IODP Expedition 311 as possible indicators of episodic methane seep events in a gas hydrate geosystem[J]. Palaios, 2010,25:671-681.
[17] Mackensen A, Wollenburg J and Licari L. Low δ13C in tests of live epibenthic and endobenthic foraminifera at a site of active methane seepage[J]. Paleoceanography, 2006,21:PA2022, doi:10.1029/2005PA001196.
[18] Martin J B, Day S A, Rathburn A E, et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2004,5. doi:10.1029/2003GC000629.
[19] Martin R A, Nesbitt E A and Campbell K A. The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand[J]. Marine Geology, 2010,272:270-284.
[20] Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall Trough (NE Atlantic)[J]. Geobios, 2005,38:247-255.
[21] Panieri G, Camerlenghi A, Cacho I, et al. Tracing seafloor methane emissions with benthic foraminifera:Results from the Ana submarine landslide (Eivissa Channel, Western Mediterranean Sea)[J]. Marine Geology, 2012,291-294:97-112.
[22] Rathburn A E, Pérez M E, Martin J B, et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California[J]. Geochemistry Geophysics Geosystems, 2003,4:1106. doi:10.1029/2003GC000595.
[23] Sen Gupta B K, Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters, 1994,14:88-96.
[24] Wefer G, Heinze P-M, Berger W H. Clues to ancient methane release[J]. Nature, 1994,369:282.
[25] Kennett J P, Cannariato K G, Hendy I L, et al. Methane Hydrates in Quaternary Climate Change:The Clathrate Gun Hypothesis[M]. Washington, DC:American Geophysical Union. 2003,216.
[26] Uchida M, Shibata Y, Ohkushi K, et al. Episodic methane release events from last Glacial marginal sediments in the western North Pacific[J]. Geochemistry Geophysics Geosystems, 2004,5. doi:10.1029/2004GC000699.
[27] Gieskes J, Mahn C, Day S, et al. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments:Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin[J]. Chemical Geology, 2005,220:329-345.
[28] Torres M E, Mix A C, Kinports K, et al. Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells?[J]. Paleoceanography, 2003,18:1062. doi:10.1029/2002PA000824.
[29] Riddihough R. Recent movements of the Juan de Fuca plate system[J]. Journal of Geophysical Research, 1984,89:6980-6994.
[30] Expedition 311 Scientists. Site U1328. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. Washington, DC:(Integrated Ocean Drilling Program Management International, Inc.),2006, doi:10.2204/iodp.proc.311.106.2006.
[31] Expedition 311 Scientists. Site U1329. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311[R]. Washington, DC:(Integrated Ocean Drilling Program Management International, Inc.),2006, doi:10.2204/iodp.proc.311.107.2006.
[32] Expedition 311 Scientists. Cascadia Margin Gas Hydrates. Integrated Ocean Drilling Program Expedition 311 Preliminary Report[R]. 2005,141.
[33] Pierre C, Blanc Valleron M M, Rouchy J M, et al. Data report:stable isotope composition of authigenic carbonates from the northern Cascadia margin, IODP Expedition 311, Site U1325-U1329[R]. In:Riedel M, Collett T S, Malone M J et al. eds. Proceedings of the Integrated Ocean Drilling Program, Volume 311. Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). 2009,doi:10.2204/iodp.proc.311.210.2009.
[34] Blanc Valleron M M, Pierre C, Bartier D, et al. Mineralogy of authigenic carbonates from the northern Cascadia margin, IODP Expedition 311[C]. IODP Expedition 311-2nd Post-Expedition Meeting. 2007, 9-13.
[35] Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface:What have we learned in the past decade?[J]. Earth-Science Reviews, 2003,61(1-2):149-179.
[36] Hesse R, Harrison W E. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins[J]. Earth and Planetary Science Letters, 1981, 55:453-462.
[37] Pierre C, Rouchy J M, Gaudichet A. Diagenesis in the gas hydrate sediments of the Blake Ridge:Mineralogy and stable isotope compositions of the carbonate and sulfide minerals[R]. In:Paull C K, Matsumoto R, Wallace P J et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164:139-146.
[38] Hyndman R D, Davis E E. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J]. Journal of Geophysical Research, 1992,97:7025-7041.
[39] Bernhard J M, Martin J B, Rathburn A E. Combined carbonate carbon isotopic and cellular ultrastructural studies of individual benthic foraminifera:2. Toward an understanding of apparent disequilibrium in hydrocarbon seeps[J]. Paleoceanography,2010, 25:PA4206.doi:10.1029/2010PA001930.
[40] Torres M E, Martin R A, Klinkhammer G, et al. Post depositional alteration of foraminiferal shells in cold seep settings:New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates[J]. Earth and Planetary Science Letters, 2010,299:10-22.
-
计量
- 文章访问数: 1243
- PDF下载数: 5
- 施引文献: 0