浮游有孔虫B/Ca作为海水pH替代指标有效性的初步评估:生命效应和溶解作用

郭景腾, 李铁刚, 于心科, 熊志方, 常凤鸣. 浮游有孔虫B/Ca作为海水pH替代指标有效性的初步评估:生命效应和溶解作用[J]. 海洋地质与第四纪地质, 2015, 35(6): 109-118. doi: 10.16562/j.cnki.0256-1492.2015.06.011
引用本文: 郭景腾, 李铁刚, 于心科, 熊志方, 常凤鸣. 浮游有孔虫B/Ca作为海水pH替代指标有效性的初步评估:生命效应和溶解作用[J]. 海洋地质与第四纪地质, 2015, 35(6): 109-118. doi: 10.16562/j.cnki.0256-1492.2015.06.011
GUO Jingteng, LI Tiegang, YU Xinke, XIONG Zhifang, CHANG Fengming. A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 109-118. doi: 10.16562/j.cnki.0256-1492.2015.06.011
Citation: GUO Jingteng, LI Tiegang, YU Xinke, XIONG Zhifang, CHANG Fengming. A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 109-118. doi: 10.16562/j.cnki.0256-1492.2015.06.011

浮游有孔虫B/Ca作为海水pH替代指标有效性的初步评估:生命效应和溶解作用

  • 基金项目:

    中国科学院战略性先导科技专项项目(XDA10010305)

    国家自然科学基金项目(41230959,41106042)

    国家海洋局项目"全球变化及海气相互作用"专项(GASI-04-01-02)

详细信息
    作者简介: 郭景腾(1989-),男,硕士生,主要从事古海洋与古环境研究,E-mail:Guojt625@163.com
    通讯作者: 李铁刚, tgli@qdio.ac.cn
  • 中图分类号: P736.22

A PRELIMINARY EVALUATION ON B/CA OF PLANKTIC FORAMINIFERA AS A PROXY FOR SEAWATER PH: VITAL EFFECTS AND DISSOLUTION

More Information
  • 浮游有孔虫B/Ca主要受控于海水pH,可作为海水pH值的替代性指标,其在探索海洋对大气pCO2冰期旋回贡献作用的研究中广受关注。然而,利用浮游有孔虫B/Ca重建海水pH,其结果的可靠性还受到温度、[CO32-]、溶解作用、生命效应(共生光合作用、呼吸作用和钙化作用)以及属种差异的制约。为评估生命效应和溶解作用对B/Ca指标有效性的影响,测定了西太平洋暖池MD06-3052岩心特征样品的浮游有孔虫表层种Globigerinoides ruber和次表层种Neogloboquadrina dutertrei在不同壳体粒径、不同壳体厚度下的B/Ca。结果表明,除两个层位外,G.ruber的B/Ca随壳体粒径的增大,总体上呈增高趋势,主要由钙化作用速率逐渐加快所致;而两个特例层位分别表现为B/Ca随粒径变化不大和随粒径先不变后增加,这可能是由钙化作用、呼吸作用与共生光合作用对G.ruber B/Ca影响的相反效应导致的竞争关系所致。N.dutertrei的B/Ca随壳体粒径的增大,总体呈降低趋势,呼吸作用可能是导致该趋势的主要原因。另外,同一层位相同粒径G.ruber和N.dutertrei的B/Ca也明显不同。这些相同种属不同粒径之间以及相同粒径不同种属之间B/Ca的差异综合表明生命效应通过表征的具体过程对浮游有孔虫B/Ca有重要影响。然而,同一层位、相同粒径、不同厚度的G.ruber和N.dutertrei B/Ca各自相差不大,表明溶解作用对浮游有孔虫B/Ca影响甚微。总之,从生命效应和溶解作用角度看,只要挑选优势粒径浮游有孔虫,将生命效应对其B/Ca的影响降到最低,浮游有孔虫B/Ca是有效的海水pH的替代性指标。
  • 加载中
  • [1]

    Barker S,Elderfield H.Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2[J].Science, 2002,297(5582):833-836.

    [2]

    Palmer M R,Pearson P N.A 23,000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean[J].Science,2003,300(5618):480-482.

    [3]

    Hönisch B,Hemming N G.Surface ocean pH response to variations in pCO2 through two full glacial cycles[J].Earth and Planetary Science Letters,2005,236(1):305-314.

    [4]

    Yu J,Elderfield H,Hönisch B.B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J].Paleoceanography, 2007,22(2),PA2202,doi:10.1029/2006PA001347.

    [5]

    Dickson A G.Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J].Deep Sea Research Part A.Oceanographic Research Papers,1990,37(5):755-766.

    [6]

    Hemming N G.Hanson G N.Boron isotopic composition and concentration in modern marine carbonates[J].Geochim.Cosmochim. Acta,1992,56:537-543.

    [7]

    Foster G L.Seawater pH,pCO2 and[CO32-]variations in the Caribbean Sea over the last 130 kyr:A boron isotope and B/Ca study of planktic foraminiferal[J].Earth and Planetary Science Letters,2008,271:254-266.

    [8]

    Sanyal A,Hemming N G,and Broecker W S,Changes in pH in the eastern equatorial Pacific across stage 5-6 boundary based on boron isotopes in foraminifera[J].Global Biogeochemical Cycles,1997,11(1):125-133.

    [9]

    Yu J,Thornalley D J R,Rae J W B,et al.Calibration and application of B/Ca,Cd/Ca,and δ11 B in Neogloboquadrinapachyderma (sinistral)to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation[J].Paleoceanography, 2013,28(2):237-252.

    [10]

    Wara M W,Delaney M L,Bullen T D,et al.Possible roles of pH,temperature,and partial dissolution in determining boron concentration and isotopic composition in planktonic foraminifera[J].Paleoceanography,2003,18(4),1100,doi:10.1029/2002PA000797.

    [11]

    Allen K A,Hönisch B,Eggins S M et al.Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulinauniversa[J].Earth and Planetarny Science Letters, 2011,309:291-301.

    [12]

    Sanyal A,Hemming N G,Broecker W S,et al.Oceanic pH control on the boron isotopic composition of foraminifera:Evidence from culture experiments[J].Paleoceanography, 1996,11(5):513-517.

    [13]

    Ni Y,Foster G L,Bailey T,et al.A core top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers[J].Paleoceanography,2007,22(3),PA3212, doi:10.1029/2006PA001337.

    [14]

    Hendry K R,Rickaby R E M,Meredith M P,et al.Controls on stable isotope and trace metal uptake in Neogloboquadrina pachyderma (sinistral)from an Antarctic sea-ice environment[J].Earth and Planetary Science Letters,2009,278:67-77.

    [15]

    Seki O,Foster G L,Schmidt D N et al.Alkenone and boronbased Pliocene pCO2 records[J].Earth and Planetary Science Letters,2010,292:201-211.

    [16]

    Traipati A K,Roberts C D,Eagle R A.Coupling of CO2 and Ice Sheet stability over major climate transitionsof the last 20 Million years[J].Science,2009,326:1394-1397.

    [17]

    Allen K A,Honisch B.The planktic foraminiferal B/Ca proxy for seawater carbonate chemistry:A critical evaluation[J].Earth and Planetary Science Letters,2012,345:203-211.

    [18]

    Klochko K,Cody G D,Tossell J A,et al.Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR[J].Geochimicaet Cosmochimica Acta,2009,73:1890-1900.

    [19]

    Hönisch B,Bijma J,Russell A D,et al.The influence of symbiont photosynthesis on the boron isotopic composition of foraminifera shells[J].Marine Micropaleontology,2003,49(1):87-96.

    [20]

    Elderfield H,Vautravers M,Cooper M.The relationship between shell size and Mg/Ca,Sr/Ca,δ18O,andδ13C of species of planktonic foraminifera[J].Geochemistry,Geophysics, Geosystems,2002,3(8):1-13.

    [21]

    Hönisch B,Hemming N G.Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells:Partial dissolution and shell size effects[J].Paleoceanography, 2004,19(4),PA4010,doi:10.1029/2004PA001026.

    [22]

    仇晓华,李铁刚,常凤鸣,等.西菲律宾海15万年以来的浊流沉积及其成因[J].海洋地质与第四纪地质,2012,32(4):157-163.

    [QIU Xiaohua,LI Tiegang,CHANG Fengming,et al.Turbidite deposition record and its mechanism since 150 kaBP in western Philippine sea[J].Marine Geology and Quaternary Geology,2012,32(4):157-163.]

    [23]

    Lea D W,Pak D K,Spero H J.Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J].Science,2000,289(5485):1719-1724.

    [24]

    Erez J.The source of ions for biomineralization in foraminifera and their implications for paleoceanographicproxies[J]. Reviews in Mineralogy and Geochemistry,2003,54(1):115-149.

    [25]

    Schmidt D N,Renaud S,Bollmann J,et al.Size distribution of Holocene planktic foraminifer assemblages:biogeography, ecology and adaptation[J].Marine Micropaleontology,2004, 50(3):319-338.

    [26]

    Anderson O R,Faber W W.An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45Ca as a tracer:a recommended procedure for improved accuracy[J].The Journal of Foraminiferal Research,1984,14(4):303-308.

    [27]

    Tripati A K,Roberts C D,Eagle R A,et al.A 20 million year record of plankticforaminiferal B/Ca ratios:Systematics and uncertainties in pCO2 reconstructions[J].Geochimica et Cosmochimica Acta,2011,75(10):2582-2610.

    [28]

    Zeebe R E,Bijma J,Wolf-Gladrow D A.A diffusion-reaction model of carbon isotope fractionation in foraminifera[J].Marine Chemistry,1999,64(3):199-227.

    [29]

    Zeebe R E,Wolf-Gladrow D A,Bijma J,et al.Vital effects in foraminifera do not compromise the use of δ11B as a paleopH indicator:Evidence from modeling[J].Paleoceanography, 2003,18(2),1043,doi:10.1029/2003PA000881.

    [30]

    Gastrich M D.Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera[J].Journal of Phycology, 1987,23(4):623-632.

    [31]

    Spero H J,Parker S L.Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa,and its potential contribution to oceanic primary productivity[J].The Journal of Foraminiferal Research,1985,15(4):273-281.

    [32]

    Spero H J,Lerche I,Williams D F.Opening the carbon isotope "vital effect" black box,2,Quantitative model for interpreting foraminiferal carbon isotope data[J].Paleoceanography, 1991,6(6):639-655.

    [33]

    Rosenthal Y,Boyle E A.Factors controlling the fluoride content of planktonic foraminifera:An evaluation of its paleoceanographic applicability[J].Geochimica et Cosmochimica Acta,1993,57(2):335-346.

    [34]

    BrownS J,Elderfield H.Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution:Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography,1996,11(5):543-551.

    [35]

    Dekens P S,Lea D W,Pak D K,et al.Core top calibration of Mg/Ca in tropical foraminifera:Refining paleotemperature estimation[J].Geochemistry,Geophysics,Geosystems, 2002,3(4):1-29.

    [36]

    De Villiers S.Foraminiferal shell-weight evidence for sedimentary calcite dissolution above the lysocline[J].Deep Sea Research Part I:Oceanographic Research Papers,2005,52(5):671-680.

    [37]

    Archer D,Emerson S,Reimers C.Dissolution of calcite in deep-sea sediments:pH and O2 microelectrode results[J]. Geochimica et Cosmochimica Acta,1989,53(11):2831-2845.

    [38]

    Emerson S,Bender M.Carbon fluxes at the sediment-water interface of the deep-sea:calcium carbonate preservation[J]. Journal of Marine Research,1981,39:139-162.

  • 加载中
计量
  • 文章访问数:  989
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2015-02-10
修回日期:  2015-12-05

目录