-
摘要:
俯冲侵蚀是一种将地壳及岛弧物质从弧前搬运走的地质过程,会导致弧前物质的缺失,这种地质过程普遍地出现在汇聚型板块边缘。雅浦海沟位于加罗林板块与菲律宾海板块之间,是一个活跃的俯冲带。利用2015年中科院海洋所在西太平洋雅浦海采集的最新的多波束和地震数据,给出了雅浦海沟发生俯冲侵蚀的直接证据:(1)雅浦海沟具有异常短的沟弧间距(41 km);(2)海沟呈不对称的“V”字形,增生楔缺失;(3)俯冲板片基底起伏程度大,加罗林洋底高原上洋脊、海山、地垒地堑构造发育;(4)海沟内壁斜坡较陡,弧前斜坡坡度的平均值约8.69°,雅浦海沟的弧前增生楔缺失。揭示了雅浦海沟南北两侧俯冲侵蚀模式的差异,北部的俯冲侵蚀主要由于洋底高原上地垒地堑与上覆板块的摩擦造成,板块之间可能不是直接接触,存在“剥蚀带”;南部的俯冲侵蚀主要由于洋底高原上的海山与上覆板块的摩擦造成,板块之间可能是直接接触的。
Abstract:As a specific geological process, subduction erosion can move the substance of the earth crust and arc away from the forearc wedge and cause the missing of forearc crustal material, which generally occurs at the convergent plate boundaries. The Yap trench is an active subduction zone which is located at the convergence zone of the Caroline Plate and Philippine Sea Plate. According to the new multi-beam and seismic data that acquired by the integrated geophysical survey off the Yap Island, western Pacific, conducted by Institute of Oceanology, Chinese Academy of Sciences, we found evidence of erosion as follows: (1)The Yap trench has unusually short distance to the arc from the trench axis (41 km); (2)The cross-sections across the axis show asymmetry V-shape and the accretionary wedge is absent in the trench; (3)The relief of oceanic basement is severe, because ridges, sea mountains, structural belt of horst and graden exist in the oceanic plateaux of Caroline Plate; (4) The trench wall exhibits a steep slope and the mean forearc slope is 8.69° and the accretionary wedge is missing. We speculate that the mode of subduction erosion is different on both sides of the Yap trench. The subduction erosion of oceanic plateau in the northern Yap trench is mainly resulted from the friction between the structural belt of horst and graben and the overlying plate, and the structural belt of horst and graben initially might be filled with sediment, so there is a zone of basal erosion between the plates rather than direct contact; However, the subduction erosion of oceanic plateau in the southern Yap trench is mainly resulted from friction between the seamounts and overlying plate and the two plates contact directly.
-
-
[1] Kopp H, Flueh E R, Petersen C J, et al. The Java margin revisited: Evidence for subduction erosion off Java[J]. Earth & Planetary Science Letters, 2006, 242(1):130-142.
[2] Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust[J]. Reviews of Geophysics, 2004, 42(2):117-128. doi: 10.1029/2003rg000127
[3] Huene R V, Scholl D W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys[J]. Reviews of Geophysics, 1991, 29(3):279-316.
[4] Stern C R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle[J]. Gondwana Research, 2011, 20(2):284-308. doi: 10.1016/j.gr.2011.03.006
[5] Huene R V, Ranero C R, Vannucchi P. Generic model of subduction erosion[J]. Geology, 2004, 32(10):913-916. doi: 10.1130/G20563.1
[6] Scholl D W, Von Huene R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens[J]. Geological Society London Special Publications, 2009, 318(1):105-125. doi: 10.1144/SP318.4
[7] Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction[J]. Journal of Geodynamics, 2004, 37(1):83-102. doi: 10.1016/j.jog.2003.10.003
[8] Fujiwara T.Morphology and tectonics of the Yap Trench[J]. Marine Geophysical Researches, 2000, 21(1):69-86. doi: 10.1023/a:1004781927661
[9] Hawkins J, Batiza R. Metamorphic rocks of the Yap arc-trench system[J]. Earth & Planetary Science Letters, 1977, 37(2):216-229. doi: 10.1016/0012-821x(77)90166-2
[10] Hayes D E. Hypothetical Model for the Bending of the Mariana Arc[M]. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, 2013:281-293.
[11] Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate[J]. Chemical Geology, 2002, 189(1):35-53. doi: 10.1016/S0009-2541(02)00062-1
[12] Seno T, Stein S, Gripp A E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data[J]. Journal of Geophysical Research Atmospheres, 1993, 98(B10):17941-17948. doi: 10.1029/93JB00782
[13] Nagihara S, Kinoshita M, Fujimoto H, et al. Geophysical observations around the northern Yap Trench: seismicity, gravity and heat flow[J]. Tectonophysics, 1989, 163(1-2):93-104. doi: 10.1016/0040-1951(89)90120-0
[14] Fujika, K, Kobayashi K, Fujiwara T, et al. Tectonics of the southern tip of the Philippine Sea: results of Southerncross' 95 cruise[J]. Jamstec J. Deep Sea, 1996, 12:275-290.
[15] Breitsprecher K, Thorkelson D J. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula[J]. Tectonophysics, 2009, 464(1-4):10-20. doi: 10.1016/j.tecto.2008.02.013
[16] Sato T, Matsu′Ura M. A kinematic model for evolution of island arc-trench systems[J]. Geophysical Journal International, 1993, 114(3):512-530. doi: 10.1111/j.1365-246X.1993.tb06984.x
[17] Fryer P, Sujimoto H, Sekine M, et al. Volcanoes of the southwestern extension of the active Mariana island arc: New swath-mapping and geochemical studies[J]. Island Arc, 2004, 7(3):596-607. doi: 10.1111/j.1440-1738.1998.00212.x
[18] Isozaki Y, Aoki K, Nakama T, et al. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18(1):82-105. doi: 10.1016/j.gr.2010.02.015
[19] Jacobson C E, Grove M, Pedrick J N, et al. Late Cretaceous-early Cenozoic tectonic evolution of the southern California margin inferred from provenance of trench and forearc sediments[J]. Geological Society of America Bulletin, 2011, 123(3/4):485-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed2069950c2d410a3a67f84a203f53a5
[20] Kay S M, Godoy E, Kurtz A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes[J]. Geological Society of America Bulletin, 2005, 117(1/2):67-88. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-B25431.1/
[21] Kobayashi K. Origin of the Palau and Yap trench-arc systems[J]. Geophysical Journal International, 2004, 157(3):1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x
[22] Fuller M, Haston R, Schmidtke E. Paleomagnetism in SE Asia: Sinistral Shear Between Philippine Sea Plate and Asia[M]// Paleomagnetic Rotations and Continental Deformation. 1989: 411-430.
[23] Haston R. Paleomagnetic results from Palau, West Caroline Islands: A constraint on Philippine Sea plate motion[J]. Geology, 1988, 16(16):654-657. doi: 10.1130/0091-7613(1988)0162.3.CO;2
[24] Kitada K, Seama N, Yamazaki T, et al. Distinct regional differences in crustal thickness along the axis of the Mariana Trough, inferred from gravity anomalies[J]. Geochemistry Geophysics Geosystems, 2006, 7(4):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2005GC001119
[25] Ballance P F, Scholl D W, Vallier T L. Subduction of a late Cretaceous seamount of the Louisville ridge at the Tonga trench: A model of normal and accelerated tectonic erosion[J]. Tectonics, 1989, 8(5):953-962. doi: 10.1029/TC008i005p00953
[26] Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis[J]. Tectonophysics, 1999, 313(3):271-292. doi: 10.1016/S0040-1951(99)00204-8
[27] Hegarty K A, Weissel J K. Complexities in the Development of the Caroline Plate Region, Western Equatorial Pacific[M]// The Ocean Basins and Margins. Springer US, 1988: 277-301.
[28] Fornari D J, Weissel J K, Perfit M R, et al. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline plate[J]. Earth & Planetary Science Letters, 1979, 45(1):1-15. doi: 10.1016/0012-821X(79)90102-X
[29] Perfit M R, Fornari D J. Mineralogy and geochemistry of volcanic and plutonic rocks from the boundaries of the Caroline plate: Tectonic implications[J]. Tectonophysics, 1982, 87(1-4):279-313. doi: 10.1016/0040-1951(82)90230-X
[30] 陆鹿, 严立龙, 李秋环, 等.洋底高原及其对地球系统意义研究综述[J].岩石学报, 2016, 32(6):1851-1876. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201606019
LU Lu, YAN Lilong, LI Qiuhuan, et al. Oceanic plateau and its significances on the Earth system: A review[J]. Acta Petrologica Sinica, 2016, 32(6):1851-1876. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201606019
[31] Bracey D R, Andrews J E. Western Caroline Ridge: Relic island arc?[J]. Marine Geophysical Researches, 1974, 2(2):111-125. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232162521/
[32] Weissel J K, Anderson R N. Is there a Caroline plate?[J]. Earth & Planetary Science Letters, 1978, 41(2):143-158. doi: 10.1016/0012-821X(78)90004-3
[33] Kukowski N, Oncken O. Subduction Erosion— the "Normal" Mode of Fore-Arc Material Transfer along the Chilean Margin?[M]. The Andes, 2006:217-236.
[34] Gao X, Wang K. Strength of stick-slip and creeping subduction megathrusts from heat flow observations[J]. Science, 2014, 345(6200):1038-41. doi: 10.1126/science.1255487
[35] Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands[J]. Journal of Geophysical Research Atmospheres, 1984, 89(NB12):9937-9948. doi: 10.1029/JB089iB12p09937
[36] Cande S C, Leslie R B. Late Cenozoic tectonics of the Southern Chile Trench[J]. Journal of Geophysical Research, 1986, 91(91):471-496. doi: 10.1029/jb091ib01p00471
[37] Laursen J, Scholl D W, Huene R V. Neotectonic deformation of the central Chile margin: Deepwater forearc basin formation in response to hot spot ridge and seamount subduction[J]. Tectonics, 2002, 21(5):2-1. doi: 10.1029/2001TC901023
[38] Huene R V, Ranero C R, Vannucchi P. Generic model of subduction erosion[J]. Geology, 2004, 32(10):913-916. doi: 10.1130/G20563.1
[39] Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands[M]. The Tectonic and geologic evolution of Southeast Asian seas and islands. American Geophysical Union, 1980.
[40] Hilde T W C. Sediment subduction versus accretion around the pacific[J]. Tectonophysics, 1983, 99(2-4):381-397. doi: 10.1016/0040-1951(83)90114-2
[41] Lallemand S, Pichon X L. Coulomb wedge model applied to the subduction of seamounts in the Japan Trench[J]. Geology, 1987, 15(11):1065-1069. doi: 10.1130/0091-7613(1987)15<1065:CWMATT>2.0.CO;2
[42] Dupont J, Herzer R H. Effect of subduction of the Louisville Ridge on the Structure and Morphology of the Tonga Arc[C]//Geology and Offshore Resource of Pacific Island Arcs: Tonga Region. 1985: 323-332.
[43] Clift P, Vannucchi P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust[J]. Reviews of Geophysics, 2004, 42(2):117-128. doi: 10.1029/2003rg000127
[44] Demets C, Gordon R G, Argus D F, et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophysical Research Letters, 1994, 21(20):2191-2194. doi: 10.1029/94GL02118
[45] Timm C, Davy B, Haase K, et al. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc[J]. Wseas Transactions on Mathematics, 2014, 9(5):123-146. doi: 10.1038/ncomms5923
[46] Bassett D, Sutherland R, Henrys S, et al. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: Implications for the growth of continental crust by subduction erosion and tectonic underplating[J]. Geochemistry Geophysics Geosystems, 2010, 11(10):155-162. doi: 10.1029/2010GC003137
[47] Bangs N L, Cande S C. Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin[J]. Tectonics, 1997, 16(3):489-503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/97TC00494
[48] Clift P D, Pecher I, Kukowski N, et al. Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision[J]. Tectonics, 2003, 22(3), 1023, doi:10.1029/2002TC 001386.
[49] Encinas A, Finger K L. Slow rates of subduction erosion and coastal underplating along the Andean margin of Chile and Peru: Comment and Reply: Comment[J]. Geology, 2007, 35(6):503-506. doi: 10.1130/G23584A.1
-