-
摘要:
东海陆架盆地位于欧亚板块、太平洋板块及菲律宾海板块的会聚交接带,是研究全球性构造体制转化事件的关键区域之一。通过物理砂箱实验方法模拟了东海陆架盆地南部瓯江凹陷、雁荡低凸起、闽江凹陷、台北低凸起及基隆凹陷几个构造单元中生代组合关系与演化过程。研究发现东海陆架盆地中生代的成盆过程及属性与中生代时期依泽奈崎板块的俯冲过程和与之相关的滨海大断裂的运动学性质是密切相关的,即瓯江凹陷的构造演化及成盆过程受滨海大断裂的运动学性质控制, 表现出张扭型盆地的特征。而距离滨海大断裂较远的闽江凹陷和基隆凹陷则主要受俯冲带后撤导致的拉伸作用的影响,具有伸展型盆地的特征。中生代盆地的演化过程如下:在晚侏罗世,滨海大断裂表现为右行压扭性质,由于受到俯冲作用的影响,整个盆地在该期应属于压扭性的盆地;晚侏罗世—早白垩世早期,滨海大断裂由晚侏罗世的右行走滑转换为左行走滑,诱导出NW—SE向的拉伸力,同时,瓯江凹陷与闽江、基隆凹陷的性质产生分异;早白垩世晚期—晚白垩世,滨海大断裂再次转换为右行张扭,由此瓯江凹陷在原右阶雁列式排列的两个洼陷基础上,形成了3个左阶雁列式排列的次级洼陷,同时,受断层控制的雁荡低凸起逐渐形成,并被一条NW—SE走向的断层分割,使得雁荡低凸起呈雁列式不连续分布。
Abstract:The East China Sea Shelf Basin lies in the juncture of the Eurasian plate, the Pacific Plate and the Philippine Sea Plate, as a critical area in study of the global tectonic regime transformation event. Sandbox modeling is adopted in this paper to simulate the Mesozoic basin-mountain coupling and the evolution of the southern East China Sea Shelf Basin, which includes the Oujiang Sag, Yandang Low Uplift, Minjiang Sag, Taipei Low Uplift and Jilong Sag. It is found that the Mesozoic basin-forming process and the attributes of the East China Sea Shelf Basin are closely related to the subduction of the Izanagi Plate and the kinematics properties of the Offshore Fault associated with the subduction. It means, the tectonic evolution and basin-forming process of the Oujiang Sag, as a transpressional basin, is controlled by the kinematics property of the Offshore Fault. Away from the Offshore Fault, the Minjiang Sag and Jilong Sag, as extensional basins, are triggered by the retreat of subduction of the Pacific Plate. In Late Jurassic, according to the modeling data, the Offshore Fault was activated as a dextral transpressive fault, and the basin as a whole was a transpressive pull-apart basin associated with the subduction of the Pacific Plate. In the Late Jurassic-Early Cretaceous, the Offshore Fault switched into a sinistral strike-slip fault, inducing NW—SE-directed extension. Coevally, the properties of the Oujiang Sag, Minjiang Sag and Jilong Sag began their differential evolution. In the Early to Late Cretaceous, the Offshore Fault transformed into a dextral transpressional fault and in the Oujiang Sag there formed three sub-sags in left-stepping and en echelon pattern in geometry, which overlapped two proto-sub-sags in right stepping and en echelon pattern. Then the fault-controlled Yandang Low Uplift was formed, and separated by a NW—SE-striking fault, resulting in an en echelon and discrete geometry.
-
Key words:
- sandbox modeling /
- Mesozoic /
- the Offshore Fault /
- the East China Sea Shelf Basin
-
-
图 4 模型4平面样式与剖面断层组合图、地震剖面图[32]
Figure 4.
-
[1] 索艳慧, 李三忠, 戴黎明, 等.东海陆架盆地构造单元划分与特征[J].海洋地质与第四纪地质, 2010, 30(6): 49-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201006007
SUO Yanhui, LI Sanzhong, DAI Liming, et al. Division and characteristics of tectonic units of the East China Sea shelf basin[J]. Marine Geology and Quaternary Geology, 2010, 30(6): 49-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201006007
[2] Dai L M, Li S Z, Lou D, et al. Numerical modeling of Late Miocene tectonic inversion in the Xihu Sag, East China Sea Shelf Basin, China[J]. Journal of Asian Earth Sciences, 2014, 86: 25-37. doi: 10.1016/j.jseaes.2013.09.033
[3] 杨香华, 李安春.东海大陆边缘基底性质与沉积盆地[J].中国海上油气(地质), 2003, 17(1): 25-28, 56. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301005
YANG Xianghua, LI Anchun. Basement nature and sedimentary basins along the continental margin in East China sea[J]. China Offshore Oil and Gas (Geology), 2003, 17(1): 25-28, 56. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-dz200301005
[4] 索艳慧, 李三忠, 戴黎明, 等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报, 2012, 28(8): 2602-2618. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx
SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8): 2602-2618. http://www.ysxb.ac.cn/ysxb/ch/reader/key_query.aspx
[5] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008
LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the east Asian continental magin[J]. Marine Geology and Quaternary Geology, 2013, 33(3): 65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008
[6] 黄汲清, 任纪舜, 姜春发, 等.中国大地构造基本轮廓[J].地质学报, 1977, 51(2): 117-135. http://www.geojournals.cn/dzxb/ch/reader/key_query.aspx
HUANG Jiqing, REN Jishun, JIANG Chunfa, et al. An outline of the tectonic characteristics of China[J]. Acta Geologica Sinica, 1977, 51(2): 117-135. http://www.geojournals.cn/dzxb/ch/reader/key_query.aspx
[7] 黄汲清, 任纪舜, 姜春发, 等.中国大地构造及其演化[M].北京:科学出版社, 1980.
HUANG Jiqing, REN Jishun, JIANG Chunfa, et al. Tectonics and Evolution of China[M]. Beijing: Science Press, 1980.
[8] McClay K R, Ellis P G. Geometries of extensional fault systems developed in model experiments[J]. Geology, 1987, 15(4): 341-344. doi: 10.1130/0091-7613(1987)15<341:GOEFSD>2.0.CO;2
[9] McClay K R. Extensional fault systems in sedimentary basins: A review of analogue model studies[J]. Marine and Petroleum Geology, 1990, 7(3): 206-233. doi: 10.1016/0264-8172(90)90001-W
[10] Eisenstadt G, Sims D. Evaluating sand and clay models: Do rheological differences matter?[J]. Journal of Structural Geology, 2005, 27(8): 1399-1412. doi: 10.1016/j.jsg.2005.04.010
[11] Patton T L. Sandbox models of downward-steepening normal faults[J]. AAPG Bulletin, 2005, 89(6): 781-797. doi: 10.1306/0105052001108
[12] McClay K R, White M J. Analogue modelling of orthogonal and oblique rifting[J]. Marine and Petroleum Geology, 1995, 12(2): 137-151. doi: 10.1016/0264-8172(95)92835-K
[13] 周建勋, 漆家福, 童亨茂.盆地构造研究中的砂箱模拟实验方法[M].北京:地震出版社, 1999.
ZHOU Jianxun, QI Jiafu, TONG Hengmao. Sand Box Simulation Experiment Method in Basin Tectonics Research[M]. Beijing: Earthquake Publishing House, 1999.
[14] Schultz R A. Understanding the process of faulting: Selected challenges and opportunities at the edge of the 21st century[J]. Journal of Structural Geology, 1999, 21(8-9): 985-993. doi: 10.1016/S0191-8141(99)00025-5
[15] Acocella V, Gudmundsson A, Funiciello R. Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland[J]. Journal of Structural Geology, 2000, 22(9): 1233-1246. doi: 10.1016/S0191-8141(00)00031-6
[16] Khalil S M, McClay K R. Extensional fault-related folding, northwestern Red Sea, Egypt[J]. Journal of Structural Geology, 2002, 24(4): 743-762. doi: 10.1016/S0191-8141(01)00118-3
[17] Dooley T, McClay K R, Pascoe R. 3D analogue models of variable displacement extensional faults: Applications to the Revfallet Fault system, offshore mid-Norway[J]. Geological Society, London, Special Publications, 2003, 212(1): 151-167. doi: 10.1144/GSL.SP.2003.212.01.10
[18] Kennedy B, Stix J, Vallance J W, et al. Controls on caldera structure: Results from analogue sandbox modeling[J]. GSA Bulletin, 2004, 116(5-6): 515-524. doi: 10.1130/B25228.1
[19] Wang Q, Li S Z, Guo L L, et al. Analogue modelling and mechanism of tectonic inversion of the Xihu Sag, East China Sea Shelf Basin[J]. Journal of Asian Earth Sciences, 2017, 139: 129-141. doi: 10.1016/j.jseaes.2017.01.026
[20] 童亨茂, 范彩伟, 童传新, 等.琼东南盆地宝岛变换带的特征、类型及其成因机制[J].石油与天然气地质, 2015, 36(6): 897-905. doi: 10.11743/ogg20150604
TONG Hengmao, FAN Caiwei, TONG Chuanxin, et al. Characteristics, types and genetic mechanism of Baodao transfer zone, Qiongdongnan Basin[J]. Oil & Gas Geology, 2015, 36(6): 897-905. doi: 10.11743/ogg20150604
[21] 于福生, 董月霞, 童亨茂, 等.渤海湾盆地辽河西部凹陷古近纪变形特征及成因[J].石油与天然气地质, 2015, 36(1): 51-60. doi: 10.11743/ogg20150107
YU Fusheng, DONG Yuexia, TONG Hengmao, et al. Characteristics and origins of structural deformation in the Paleogene in the Western Sag of Liaohe Depression, Bohai Bay Basin[J]. Oil & Gas Geology, 2015, 36(1): 51-60. doi: 10.11743/ogg20150107
[22] 张田, 张建培, 张绍亮, 等.东海陆架盆地西部坳陷带构造特征及演化[J].海洋地质前沿, 2015, 31(5): 1-7. doi: 10.16028/j.1009-2722.2015.05001
ZHANG Tian, ZHANG Jianpei, ZHANG Shaoliang, et al. Tectonic characteristics and evolution of the west depression belt of the East China Sea shelf Basin[J]. Marine Geology Frontiers, 2015, 31(5): 1-7. doi: 10.16028/j.1009-2722.2015.05001
[23] 张建培, 张田, 唐贤君.东海陆架盆地类型及其形成的动力学环境[J].地质学报, 2014, 88(11): 2033-2043. doi: 10.3969/j.issn.0001-5717.2014.11.002
ZHANG Jianpei, ZHANG Tian, TANG Xianjun. Basin type and dynamic environment in the East China Sea shelf Basin[J]. Acta Geologica Sinica, 2014, 88(11): 2033-2043. doi: 10.3969/j.issn.0001-5717.2014.11.002
[24] 张岳桥, 董树文, 李建华, 等.华南中生代大地构造研究新进展[J].地球学报, 2012, 33(3): 257-279. doi: 10.3975/cagsb.2012.03.01
ZHANG Yueqiao, DONG Shuwen, LI Jianhua, et al. The new progress in the study of mesozoic tectonics of South China[J]. Acta Geoscientica Sinica, 2012, 33(3): 257-279. doi: 10.3975/cagsb.2012.03.01
[25] 吴根耀, 矢野孝雄.东亚大陆边缘的构造格架及其中-新生代演化[J].地质通报, 2007, 26(7): 787-800. doi: 10.3969/j.issn.1671-2552.2007.07.002
WU Genyao, Yano T. Tectonic framework and Meso-Cenozoic evolution of the East Asian continental margin[J]. Geological Bulletin of China, 2007, 26(7): 787-800. doi: 10.3969/j.issn.1671-2552.2007.07.002
[26] 舒良树, 周新民.中国东南部晚中生代构造作用[J].地质论评, 2012, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004
SHU Liangshu, ZHOU Xinmin. Late Mesozoic tectonism of Southeast China[J]. Geological Review, 2012, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004
[27] 杨长清, 杨传胜, 李刚, 等.东海陆架盆地南部中生代构造演化与原型盆地性质[J].海洋地质与第四纪地质, 2012, 32(3): 105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201203013
YANG Changqing, YANG Chuansheng, LI Gang, et al. Mesozoic tectonic evolution and prototype Basin characters in the Southern East China Sea shelf basin[J]. Marine Geology and Quaternary Geology, 2012, 32(3): 105-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201203013
[28] 杨传胜, 李刚, 栾锡武, 等.东海陆架盆地雁荡低凸起综合地球物理解释及其成因探讨[J].地球物理学报, 2014, 57(9): 2981-2992. doi: 10.6038/cjg20140923
YANG Chuansheng, LI Gang, LUAN Xiwu, et al. The geophysical interpretation of Yandang Low Uplift and discussion on its genesis in the East China Sea Shelf Basin[J]. Chinese Journal of Geophysics, 2014, 57(9): 2981-2992. doi: 10.6038/cjg20140923
[29] 李刚, 龚建明, 杨长清, 等. "大东海"中生代地层分布——值得关注的新领域[J].海洋地质与第四纪地质, 2012, 32(3): 97-104. http://d.old.wanfangdata.com.cn/Conference/9195666
LI Gang, GONG Jianming, YANG Changqing, et al. Stratigraphic features of the mesozoic "Great East China Sea"——a new exploration field[J]. Marine Geology and Quaternary Geology, 2012, 32(3): 97-104. http://d.old.wanfangdata.com.cn/Conference/9195666
[30] 侯方辉.东海陆架盆地南部中生代地层分布及构造特征研究[D].中国海洋大学博士学位论文, 2014.
HOU Fanghui. Research on the distribution and tectonic characteristics of the Mesozoic strata of the East China Sea Shelf Basin[D]. Doctor Dissertation of Ocean University of China, 2014.
[31] 孙晶, 杨长清, 王建强, 等.基隆凹陷构造演化特征及油气资源潜力[J].海洋地质前沿, 2017, 33(4): 38-42. doi: 10.16028/j.1009-2722.2017.04006
SUN Jing, YANG Changqing, WANG Jianqiang, et al. Tectonic evolution of the Jilong Sag and its petroleum potential[J]. Marine Geology Frontiers, 2017, 33(4): 38-42. doi: 10.16028/j.1009-2722.2017.04006
[32] 杨传胜, 李刚, 杨长清, 等.东海陆架盆地中—新生界油气勘探研究进展与前景分析[J].海洋地质与第四纪地质, 2018, 已接收. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201802014
YANG Chuangsheng, LI Gang, YANG Changqing, et al.Meso-Cenozoic hydrocarbon prospecting and research in the East China Sea Shelf Basin[J]. Marine Geology and Quaternary Geology, 2018, accepted. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201802014
[33] Dickinson W R. Plate tectonic evolution of North Pacific rim[J]. Journal of Physics of the Earth, 1978, 26(S1): S1-S19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3391382
[34] 郑求根, 周祖翼, 蔡立国, 等.东海陆架盆地中新生代构造背景及演化[J].石油与天然气地质, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012
ZHENG Qiugen, ZHOU Zuyi, CAI Liguo, et al. Meso-Cenozoic tectonic setting and evolution of East China Sea shelf basin[J]. Oil & Gas Geology, 2005, 26(2): 197-201. doi: 10.3321/j.issn:0253-9985.2005.02.012
[35] 石建基, 张守志.长乐—南澳断裂带中生代活动特征及大地构造属性[J].吉林大学学报:地球科学版, 2010, 40(6): 1333-1343. doi: 10.3969/j.issn.1671-5888.2010.06.014
SHI Jianji, ZHANG Shouzhi. Characters of the mesozoic tectonic activity and geotectonic setting of the Changle-Nan'ao fault zone[J]. Journal of Jilin University: Earth Science Edition, 2010, 40(6): 1333-1343. doi: 10.3969/j.issn.1671-5888.2010.06.014
[36] Maruyama S, Send T. Orogeny and relative plate motions: example of the Japanese Islands[J]. Tectonophysics, 1986, 127(3-4): 305-329. doi: 10.1016/0040-1951(86)90067-3
-