-
摘要:
在海洋沉积物表层,各种碳库之间频繁的碳转换引起了越来越多科学家的关注。这些转换主要包括有机质降解生成的DIC,甲烷缺氧氧化产生DIC,以及碱度升高引起的自生碳酸盐沉淀,同时在一些甲烷强烈渗漏的冷泉区还包括游离气的渗漏过程。这些反应发生机理将在本文中逐一论述,同时文中还综述了有机质降解和甲烷缺氧氧化过程的现有计算模型,指出了目前计算模型中所存在的缺陷及每个模型的适用范围,并简要的介绍了从沉积物释放到海水中的甲烷气泡渗漏通量计算方法。然而这些模型基本都受限于目前对于机理的认识水平,为了更加精确地计算出碳在不同过程中的转换通量,今后还需要更多的工作来研究反应机理和模型中的参数,从而获得一个更加通用的模型。
Abstract:Carbon conversion between different reservoirs in the surface sediments has raised more and more attention from researchers. It mainly includes the dissolved inorganic carbon (DIC) produced by organic matter degradation and anaerobic oxidation of methane (AOM) as well as authigenic carbonate precipitation. In some intensive seepage area, gas bubble migration and dissolution is also an important carbon conversion pathway. In this paper, we summarize the mechanism of organic matter degradation and AOM through numerical modeling. In addition, upon the discussion on the shortages and applicability of each model, we introduced the method of quantification of gas bubble flux into seawater. We finally proposed that more attention be paid to the mechanism of the biogeochemical processes and the model parameters for developing a more generalized model, in order to obtain a more reliable and convincing carbon turnover modeling results.
-
Key words:
- sediment-seawater /
- interface /
- organic degradation /
- methane anaerobic oxidation /
- numerical model
-
-
表 ${table.label} 附表:模型术语表
Table ${table.label}. Appendix 1:Terminology in the models
参数 定义 量纲反应输运模型 Z 沉积物深度 cm t 时间 yr C 浓度 mM G 有机质 wt-% φ 孔隙度因素 % Ds 多孔介质中物质扩散系数 cm2/a α 生物灌洗参数 /a vp 流体流动速率 cm/a vs 沉积物沉积速率 cm/a 早期成岩过程 vmax 最大反应速度 wt-%/a k 反应速率常数 /a Km, G 酶催化有机质降解半饱和常数 % i 种类 - j 反应序数 - Km, TEA 电子受体降解有机质半饱和常数 mM TEA 电子受体浓度 mM Kin 电子受体间抑制常数 mM ΔGr 反应标准吉布斯自由能 J/mol ΔGATP 合成
ATP最小能量J/mol mi 反应产生
ATP数- χ 反应平均化学计量数 - Ea 反应活化能 J/mol B 生物质含量 wt-% Y 微生物最大生长速度 - μdec 最大分解速度 /a RTEA 有机质的氧化还原速率 mol/a a 有机质初始年龄 k/a v 有机质分布 - 甲烷缺氧
氧化过程参数 定义 量纲 溶质溶度 mM χ 反应通过细胞膜的质子数 - a 离子活度 mM ρ 单位体积中细胞个数 m3 A 假一级速率常数 /a Φ 连续函数 - 甲烷气相输运 kGF 气泡形成速率常数 /a rbubble 气泡半径 cm K0 扩散常数 cm2/a σ 气泡之间的宽度 cm fbubble 气泡释放频率 s -
[1] Hazen R M, Schiffries C M. Why deep carbon[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 1-6. doi: 10.2138/rmg.2013.75.1
[2] IPCC. Climate Change 2013: the Physical Science Basis[M]//Stocker T F, Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom, New York, NY, USA: Cambridge University Press, 2013.
[3] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296. doi: 10.1126/science.290.5490.291
[4] Jahnke R A. The global ocean flux of particulate organic carbon: Areal distribution and magnitude[J]. Global Biogeochemical Cycles, 1996, 10(1): 71-88. doi: 10.1029/95GB03525
[5] 曲建升, 孙成权, 张志强, 等.全球变化科学中的碳循环研究进展与趋向[J].地球科学进展, 2003, 18(6): 980-987. doi: 10.3321/j.issn:1001-8166.2003.06.021
QU Jiansheng, SUN Chengquan, ZHANG Zhiqiang, et al. Trends and advances of the global change studies on carbon cycle[J]. Advance in Earth Sciences, 2003, 18(6): 980-987. doi: 10.3321/j.issn:1001-8166.2003.06.021
[6] Berner R A, Canfield D E. A new model for atmospheric oxygen over phanerozoic time[J]. American Journal of Science, 1989, 289(4): 333-361. doi: 10.2475/ajs.289.4.333
[7] Wallmann K, Pinero E, Burwicz E, et al. The global inventory of methane hydrate in marine sediments: a theoretical approach[J]. Energies, 2012, 5(12): 2449-2498. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_4601df8c9815267b4a4ed024e0584614
[8] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X
[9] Boetius A, Ravenschlag K, Schubert C J, et al. Marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[10] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[11] Schulz H D, Zabel M. Marine Geochemistry[M]. 2nd ed. Berlin Heidelberg: Springer, 2006.
[12] 陈多福, 陈先沛, 陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
[13] Niemann H, Losekann T, de Beer D, et al. Novel microbial communities of the haakon mosby mud volcano and their role as a methane sink[J]. Nature, 2006, 443(7113): 854-858. doi: 10.1038/nature05227
[14] Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at hydrate ridge[J]. Global Biogeochemical Cycles, 2006, 20(2): GB2019.
[15] Burdige D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485. doi: 10.1021/cr050347q
[16] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3): 81-115. doi: 10.1016/0304-4203(95)00008-F
[17] Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective[J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002
[18] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
[19] Berner R A. Early Diagenesis: A Theoretical Approach[M]. Princeton: Princeton University Press, 1980: 1-224.
[20] Boudreau B P. Diagenetic Models and Their Implementation[M]. Berlin Heidelberg: Springer, 1997.
[21] Chuang P C, Dale A W, Wallmann K, et al. Relating sulfate and methane dynamics to geology: accretionary prism offshore SW Taiwan[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2523-2545. doi: 10.1002/ggge.20168
[22] Middelburg J J. A simple rate model for organic matter decomposition in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(7): 1577-1581. doi: 10.1016/0016-7037(89)90239-1
[23] Hoehler T M, Alperin M J, Albert D B, et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochemical Cycles, 1994, 8(4): 451-463. doi: 10.1029/94GB01800
[24] Alperin M J, Hoehler T M. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints[J]. American Journal of Science, 2009, 309(10): 869-957. doi: 10.2475/10.2009.01
[25] Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243-289. doi: 10.1080/17451000801888726
[26] Seiter K, Hensen C, Schröter J, et al. Organic carbon content in surface sediments-defining regional provinces[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(12): 2001-2026. doi: 10.1016/j.dsr.2004.06.014
[27] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2-3): 81-115. doi: 10.1016/0304-4203(95)00008-F
[28] Jorgensen B B, Boetius A. Feast and famine-microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10): 770-781. doi: 10.1038/nrmicro1745
[29] Claypool G E, Milkov A V, Lee Y J, et al. Microbial methane generation and gas transport in shallow sediments of an accretionary complex, southern hydrate ridge (ODP leg 204), Offshore Oregon, USA[C]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scentific Results. College Station, TX: Ocean Drilling Program, 2006: 1-52.
[30] Røy H, Kallmeyer J, Adhikari R R, et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay[J]. Science, 2012, 336(6083): 922-925. doi: 10.1126/science.1219424
[31] Mayer L M. Extent of coverage of mineral surfaces by organic matter in marine sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(2): 207-215. doi: 10.1016/S0016-7037(99)00028-9
[32] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423. doi: 10.1146/annurev-marine-120709-142717
[33] Arndt S, Jørgensen B B, LaRowe D E, et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis[J]. Earth-Science Reviews, 2013, 123: 53-86. doi: 10.1016/j.earscirev.2013.02.008
[34] Middelburg J J. Chemoautotrophy in the ocean[J]. Geophysical Research Letters, 2011, 38(24): L24604. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_03e91f27b4245dd821be9b8c6fb137ca
[35] Wilson J D, Barker S, Ridgwell A. Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: implications for the ballast hypothesis[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4011. http://cn.bing.com/academic/profile?id=42d9bb4613e13785f635178d8f7b568b&encoded=0&v=paper_preview&mkt=zh-cn
[36] Henson S A, Sanders R, Madsen E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1028. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011GB004099
[37] Francois R, Honjo S, Krishfield R, et al. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 34-1-34-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2001GB001722
[38] Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation[J]. FEMS Microbiology Reviews, 1994, 13(2-3): 125-135. doi: 10.1111/j.1574-6976.1994.tb00039.x
[39] Schippers A, Köweker G, Höft C, et al. Quantification of microbial communities in forearc sediment basins off sumatra[J]. Geomicrobiology Journal, 2010, 27(2): 170-182. doi: 10.1080/01490450903456798
[40] Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of archaea to extant biomass in marine subsurface sediments[J]. Nature, 2008, 454(7207): 991-994. doi: 10.1038/nature07174
[41] Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off peru[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(10): 3846-3851. doi: 10.1073/pnas.0600035103
[42] LaRowe D E, Van Cappellen P. Degradation of natural organic matter: a thermodynamic analysis[J]. Geochimica et Cosmochimica Acta, 2011, 75(8): 2030-2042. doi: 10.1016/j.gca.2011.01.020
[43] Bethke C M, Sanford R A, Kirk M F, et al. The thermodynamic ladder in geomicrobiology[J]. American Journal of Science, 2011, 311(3): 183-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f36502629bc9fa067b4db5e9b0fcdc5
[44] Finke N, Jorgensen B B. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and arctic marine sediments[J]. The ISME Journal, 2008, 2(8): 815-829. doi: 10.1038/ismej.2008.20
[45] von Lützow M, Kögel-Knabner I. Temperature sensitivity of soil organic matter decomposition-what do we know?[J]. Biology and Fertility of Soils, 2009, 46(1): 1-15. doi: 10.1007/s00374-009-0413-8
[46] Robador A, Brüchert V, Steen A D, et al. Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of arctic and temperate sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2316-2326. doi: 10.1016/j.gca.2010.01.022
[47] Robador A, Brüchert V, Jorgensen B B. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments[J]. Environmental Microbiology, 2009, 11(7): 1692-1703. doi: 10.1111/j.1462-2920.2009.01896.x
[48] Hubert C, Loy A, Nickel M, et al. A constant flux of diverse thermophilic bacteria into the cold arctic seabed[J]. Science, 2009, 325(5947): 1541-1544. doi: 10.1126/science.1174012
[49] Hubert C, Arnosti C, Brüchert V, et al. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature[J]. Environmental Microbiology, 2010, 12(4): 1089-1104. doi: 10.1111/j.1462-2920.2010.02161.x
[50] Lalonde k, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198-200. doi: 10.1038/nature10855
[51] Kristensen E, Hansen T, Delefosse M, et al. Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment[J]. Marine Ecology Progress Series, 2011, 425: 125-139. doi: 10.3354/meps09007
[52] Thullner M, Regnier P, Van Cappellen P. Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions[J]. Geobiology Journal, 2007, 24(3-4): 139-155. http://cn.bing.com/academic/profile?id=84f658ac61a8d7ffe3cffc37ce206afe&encoded=0&v=paper_preview&mkt=zh-cn
[53] Dale A W, Regnier P, Van Cappellen P. Bioenergetic controls on anaerobic oxidation of methane(AOM) in coastal marine sediments: a theoretical analysis[J]. American Journal of Science, 2006, 306(4): 246-294. doi: 10.2475/ajs.306.4.246
[54] Dale A W, Van Cappellen P, Aguilera D R, et al. Methane efflux from marine sediments in passive and active margins: estimations from bioenergetic reaction-transport simulations[J]. Earth and Planetary Science Letters, 2008, 265(3-4): 329-344. doi: 10.1016/j.epsl.2007.09.026
[55] Jorgensen B B. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments[J]. Geomicrobiology Journal, 1978, 1(1): 29-47. doi: 10.1080/01490457809377722
[56] Boudreau B P, Ruddick B R. On a reactive continuum representation of organic matter diagenesis[J]. American Journal of Science, 1991, 291(5): 507-538. doi: 10.2475/ajs.291.5.507
[57] Tarutis Jr W J. On the equivalence of the power and reactive continuum models of organic matter diagenesis[J]. Geochimica et Cosmochimica Acta, 1993, 57(6): 1349-1350. doi: 10.1016/0016-7037(93)90071-4
[58] Wallmann K, Aloisi G, Haeckel M, et al. Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(15): 3905-3927. doi: 10.1016/j.gca.2006.06.003
[59] Arndt S, Brumsack H J, Wirtz K W. Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise)[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 408-425. doi: 10.1016/j.gca.2005.09.010
[60] Wadham J L, Arndt S, Tulaczyk S, et al. Potential methane reservoirs beneath antarctica[J]. Nature, 2012, 488(7413): 633-637. doi: 10.1038/nature11374
[61] Arndt S, Hetzel A, Brumsack H J. Evolution of organic matter degradation in cretaceous black shales inferred from authigenic barite: a reaction-transport model[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2000-2022. doi: 10.1016/j.gca.2009.01.018
[62] Wehrmann L M, Arndt S, März C, et al. The evolution of early diagenetic signals in bering sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3 Ma[J]. Geochimica et Cosmochimica Acta, 2013, 109: 175-196. doi: 10.1016/j.gca.2013.01.025
[63] Buffett B, Archer D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 185-199. doi: 10.1016/j.epsl.2004.09.005
[64] Beaudoin Y C, Waite W F, Boswell R, et al. Frozen heat: a UNEP global outlook on methane gas hydrates[R]. GRID-Arendal, Norway: United Nations Environment Programme, 2014.
[65] Borowski W S, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[66] Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425): 541-546. doi: 10.1038/nature11656
[67] Borowski W S, Paull C K, Ussler Ⅲ W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3
[68] Jensen M M, Holmer M, Thamdrup B. Composition and diagenesis of neutral carbohydrates in sediments of the baltic-north sea transition[J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 4085-4099. doi: 10.1016/j.gca.2005.01.021
[69] Burdige D J, Skoog A, Gardner K. Dissolved and particulate carbohydrates in contrasting marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 1029-1041. doi: 10.1016/S0016-7037(99)00361-0
[70] Jørgensen B B, Nelson D C. Sulfide oxidation in marine sediments: geochemistry meets microbiology[J]. Geological Society of America Special Papers, 2004, 379: 63-81. http://cn.bing.com/academic/profile?id=e0da9bc5b969558a176fc8dd0c323e06&encoded=0&v=paper_preview&mkt=zh-cn
[71] Emeis K C, Brüchert V, Currie B, et al. Shallow gas in shelf sediments of the namibian coastal upwelling ecosystem[J]. Continental Shelf Research, 2004, 24(6): 627-642. doi: 10.1016/j.csr.2004.01.007
[72] Hensen C, Wallmann K. Methane formation at Costa Rica continental margin-constraints for gas hydrate inventories and cross-décollement fluid flow[J]. Earth and Planetary Science Letters, 2005, 236(1-2): 41-60. doi: 10.1016/j.epsl.2005.06.007
[73] Haeckel M, Boudreau B P, Wallmann K. Bubble-induced porewater mixing: a 3-D model for deep porewater irrigation[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5135-5154. doi: 10.1016/j.gca.2007.08.011
[74] Wegener G, Boetius A. An experimental study on short-term changes in the anaerobic oxidation of methane in response to varying methane and sulfate fluxes[J]. Biogeosciences, 2009, 6(5): 867-876. doi: 10.5194/bg-6-867-2009
[75] Nauhaus K, Boetius A, Krüger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area[J]. Environmental Microbiology, 2002, 4(5): 296-305. doi: 10.1046/j.1462-2920.2002.00299.x
[76] Dale A W, Regnier P, Knab N J, et al. Anaerobic oxidation of methane (AOM) in marine sediments from the skagerrak (Denmark): Ⅱ. Reaction-transport modeling[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2880-2894. doi: 10.1016/j.gca.2007.11.039
[77] Larowe D E, Dale A W, Regnier P. A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments[J]. Geobiology, 2008, 6(5): 436-449. doi: 10.1111/j.1472-4669.2008.00170.x
[78] Knab N J, Dale A W, Lettmann K, et al. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3746-3757. doi: 10.1016/j.gca.2008.05.039
[79] Schink B. Energetics of syntrophic cooperation in methanogenic degradation[J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 262-280. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_232610
[80] Larowe D E, Helgeson H C. Quantifying the energetics of metabolic reactions in diverse biogeochemical systems: electron flow and atp synthesis[J]. Geobiology, 2007, 5(2): 153-168. doi: 10.1111/j.1472-4669.2007.00099.x
[81] Hoehler T M. Biological energy requirements as quantitative boundary conditions for life in the subsurface[J]. Geobiology, 2004, 2(4): 205-215. doi: 10.1111/j.1472-4677.2004.00033.x
[82] Knab N J, Cragg B A, Hornibrook E R C, et al. Regulation of anaerobic methane oxidation in sediments of the Black Sea[J]. Biogeosciences, 2009, 6(8): 1505-1518. doi: 10.5194/bg-6-1505-2009
[83] Treude T, Krüger M, Boetius A, et al. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernforde bay (German baltic)[J]. Limnology and Oceanography, 2005, 50(6): 1771-1786. doi: 10.4319/lo.2005.50.6.1771
[84] Jorgensen B B, Weber A, Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(9): 2097-2120. doi: 10.1016/S0967-0637(01)00007-3
[85] Fossing H, Ferdelman T G, Berg P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 897-910. doi: 10.1016/S0016-7037(99)00349-X
[86] Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(1): 311-334. doi: 10.1146/annurev.micro.61.080706.093130
[87] Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11): 7663-7668. doi: 10.1073/pnas.072210299
[88] Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5529): 484-487. doi: 10.1126/science.1061338
[89] Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems[M]. Berlin Heidelberg: Springer, 2003.
[90] Nauhaus K, Treude T, Boetius A, et al. Environmental regulation of the anaerobic oxidation of methane: a comparison of anme-Ⅰand anme-Ⅱcommunities[J]. Environmental Microbiology, 2005, 7(1): 98-106. doi: 10.1111/j.1462-2920.2004.00669.x
[91] Orcutt B, Meile C. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions[J]. Biogeosciences, 2008, 5(6): 1587-1599. doi: 10.5194/bg-5-1587-2008
[92] Rittmann B E, VanBriesen J M. Microbiological processes in reactive modeling[J]. Reviews in Mineralogy and Geochemistry, 1996, 34(1): 311-334. http://cn.bing.com/academic/profile?id=200ff7afe97b3965004add2bdc6b8d2a&encoded=0&v=paper_preview&mkt=zh-cn
[93] Thullner M, Van Cappellen P, Regnier P. Modeling the impact of microbial activity on redox dynamics in porous media[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5005-5019. doi: 10.1016/j.gca.2005.04.026
[94] VanBriesen J M. Evaluation of methods to predict bacterial yield using thermodynamics[J]. Biodegradation, 2002, 13(3): 171-190. doi: 10.1023/A:1020887214879
[95] Nauhaus K, Albrecht M, Elvert M, et al. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate[J]. Environmental Microbiology, 2007, 9(1): 187-196. doi: 10.1111/j.1462-2920.2006.01127.x
[96] Dale A W, Aguilera D R, Regnier P, et al. Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus bay (Denmark) sediments[J]. Journal of Marine Research, 2008, 66(1): 127-155. doi: 10.1357/002224008784815775
[97] Martens C S, Klump J V. Biogeochemical cycling in an organic-rich coastal marine basin-Ⅰ. Methane sediment-water exchange processes[J]. Geochimica et Cosmochimica Acta, 1980, 44(3): 471-490. doi: 10.1016/0016-7037(80)90045-9
[98] Duan Z H, Moller N, Greenberg J, et al. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1451-1460. doi: 10.1016/0016-7037(92)90215-5
[99] Dale A W, Regnier P, Van Cappellen P, et al. Remote quantification of methane fluxes in gassy marine sediments through seismic survey[J]. Geology, 2009, 37(3): 235-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a10a36b85a341ecd56c497b5e8871e4f
[100] Smith A J, Flemings P B, Fulton P M. Hydrocarbon flux from natural deepwater Gulf of Mexico vents[J]. Earth and Planetary Science Letters, 2014, 395: 241-253. doi: 10.1016/j.epsl.2014.03.055
[101] Römer M, Sahling H, Pape T, et al. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the makran continental margin (offshore Pakistan)[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011JC007424
[102] Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the black sea: hydroacoustic characteristics and temporal variability[J]. Earth and Planetary Science Letters, 2006, 244(1-2): 1-15. doi: 10.1016/j.epsl.2006.02.011
[103] Greinert J, Lewis K B, Bialas J, et al. Methane seepage along the hikurangi margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations[J]. Marine Geology, 2010, 272(1-4): 6-25. doi: 10.1016/j.margeo.2010.01.017
-