A NEWLY DEVELOPED BOTTOM-SUPPORTED SUBMERSIBLE BUOYANT SYSTEM AND ITS TESTING APPLICATION TO A NATURAL GAS HYDRATE AREA
-
摘要:
为满足天然气水合物调查区对海底环境长期原位监测的需求,研发了坐底式潜标观测系统(海底观测基站),该系统是研究海底尤其是天然气水合物区海底环境特征的关键技术手段,可用于采集海底边界层位长期连续环境参数,评估天然气水合物开采可能引发的环境影响,为安全有效地使用天然气水合物资源提供科学依据。坐底式潜标观测系统采用坐底式设计,最大工作深度4 000 m,搭载了甲烷、二氧化碳、温盐深、溶解氧、浊度计、透射计、声学多普勒剖面仪以及定点海流计等传感器,通过声学释放器丢弃抛载锚完成上浮回收。研制完成后,成功在南海北部陆坡区进行了试验性应用,顺利完成回收,并采集到试验站位海底边界层位预定观测的各海洋物理化学环境参数。本系统在水下连续工作时间不小于180天,并可根据需求增加电池仓,延长观测周期,使长期监测能力覆盖整个水合物开采周期,可对开采前、中、后海底甲烷的泄漏情况进行对比,并对甲烷的来源进行分析,具有重要的现实意义和良好的应用前景。
Abstract:A bottom-supported submersible buoyant system is designed for long-term seabed environmental monitoring in a natural gas hydrate area. It can be used to study the characteristics of submarine environment in the area and to collect long-term environmental parameters for seabed boundary layers. Through comparison of related parameters acquired before and after, the changes near seafloor resulted from the exploration and pilot production of natural gas hydrate could be monitored and assessed, for the purpose to reduce the risk of environmental changes. The submersible may carry various sensors, such as those for measurement of methane and carbon dioxide, CTD (Conductance, Temperature and Depth), dissolved oxygen, turbidity, transmittance, ADCP (Acoustic Doppler Current Profilers) and single-point RCM (Recording Current Meter). It can be recovered by discarding the clump weight through deep-sea acoustic release transponder. The maximum working depth of this system is 4000 meters and the batteries are sufficient to provide power for all the sensors for more than 180 days. After a successful deep-sea test with effective data and safe recovery in northern South China Sea, it is confirmed that the bottom-supported submersible buoyant system has a promising prospect of application in improving safe and effective use of natural gas hydrate resources.
-
-
表 1 环评海底潜标主要技术参数
Table 1. Main technical parameters
技术参数 坐底式潜标观测系统 整体尺寸 2.20 m×1.80 m×2.50 m 空气中重量 1.5 t 水下正浮力 70 kg 上浮速度 60~70 m/min 最大工作深度 4 000 m 最长工作时间 ≥180 d 距边界层位距离 ≤50 cm 通信方式 水声通讯 表 2 集成传感器类型及工作参数设置
Table 2. Working parameters settings of the sensors
序号 传感器 型号 主要技术参数 1 CH4 Contros’HydroCTMHISEM CH4 Plus Sensor 最大工作水深:4 000 m;探测原件:NDIR光学分析系统;工作温度:0~30 ℃;测量范围:1 ~ 40 000 μatm;分辨率:<1 μatm;精度:±1%测量值。 2 CO2 Contros’HydroCTM CO2 Sensor 最大工作水深:4 000 m;探测原件:NDIR光学分析系统;工作温度:0~30 ℃;测量范围:(100 ~ 3 000)×10-6;分辨率: < 1×10-6;精度:±1%测量值。 3 CTD SBE 16 Plus V2 最大工作水深:7 000 m采样频率:≥4 HZ温度测量范围:-5 ℃~35 ℃;分辨率:≤0.000 1 ℃;精度:≤0.005 ℃。压力测量范围:0~20/100/350/600/1 000/2 000/3 500/7 000 m分辨率:≤0.002%满量程;精度:≤0.1%满量程。电导率测量范围:0~9 S/m;分辨率:≤0.000 05 S/m;精度:≤0.000 5 S/m。溶解氧测量范围:120%表面饱和度分辨率:≤0.2 μM/kg;精度:≤±3 μM/kg。浊度测量范围:0~30/60/125/250/500/1 000 NTU 4 ADCP RDI WHS-300 最大工作水深:6 000 m流速精度:≤水流速的±0.5%±5 mm/s流速分辨率:≤1 mm/s流速范围:±5 m/s(默认);±20 m/s(最大)发射频率:≥2 Hz测量范围:宽带模式126 m,大量程模式165 m 5 RCM Anaderaa Seaguard Rcm (DW) 最大工作水深:6 000 m;流速测量范围:0~300 cm/s;分辨率:0.1 mm/s;平均精度:±0.15 cm/s;相对精度:±1%读数;流向测量范围:0~360°磁角;分辨率:0.01°;精确度:±5°在0~15°倾角,±7.5°在15~35°倾角。 表 3 各传感器测量结果
Table 3. The results of all the sensors
测量参数 单位 变化范围 平均值 CH4 nmol/L 13.7~42.4 26.3 CO2 μatm 820~845 830 温度 ℃ 2.94~3.05 3.01 盐度 PSU 34.563~34.570 34.566 压力 dB 1 370.2~1 374.7 1 372.8 溶解氧 mg/L 2.95~3.06 2.99 浊度 NTU 0~16.0 0.3 透射度 % 0~4.3 1.5 流速(底流) m/s 0.009~0.301 0.107 流速(距海底4 m) m/s - 0.051 流速(距海底36 m) m/s - 0.083 流速(距海底68 m) m/s - 0.079 -
[1] 姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪地质, 2005, 25(2): 81-90. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200502012
YAO Bochu. The forming condition and distribution characteristics of the gas hydrate in the South China Sea[J]. Marine Geology and Quaternary Geology, 2005, 25(2): 81-90. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200502012
[2] 吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探[J].天然气工业, 2007, 27(9): 1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001
WU Nengyou, ZHANG Haiqi, YANG Shengxiong, et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9): 1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001
[3] 邓希光, 吴庐山, 付少英, 等.南海北部天然气水合物研究进展[J].海洋学研究, 2008, 26(2): 67-74. doi: 10.3969/j.issn.1001-909X.2008.02.010
DENG Xiguang, WU Lushan, FU Shaoying, et al. The research advances of natural gas hydrates in northern South China Sea[J]. Journal of Marine Sciences, 2008, 26(2): 67-74. doi: 10.3969/j.issn.1001-909X.2008.02.010
[4] 王宏斌, 张光学, 梁劲, 等.南海北部陆坡构造坡折带中的天然气水合物[J].沉积学报, 2008, 26(2): 283-293. http://d.old.wanfangdata.com.cn/Periodical/cjxb200802013
WANG Hongbin, ZHANG Guangxue, LIANG Jin, et al. Gas hydrates in the SSBZ in the North Slope of the South China Sea[J]. Acta Sedimentologica Sinica, 2008, 26(2): 283-293. http://d.old.wanfangdata.com.cn/Periodical/cjxb200802013
[5] 陈多福, 姚伯初, 赵振华, 等.珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J].海洋地质与第四纪地质, 2001, 21(4): 73-78. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200104013
CHEN Duofu, YAO Bochu, ZHAO Zhenhua, et al. Geochemical constraints and potential distributions of gas hydrates in pearl river mouth basin and Qiongdongnan basin in the northern margin of the South China Sea[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 73-78. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200104013
[6] Bohannon J. Weighing the climate risks of an untapped fossil fuel[J]. Science, 2008, 319(5871): 1753. doi: 10.1126/science.319.5871.1753
[7] 魏合龙, 孙治雷, 王利波, 等.天然气水合物系统的环境效应[J].海洋地质与第四纪地质, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007
WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007
[8] Lelieveld J, Crutzen P J, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus B: Chemical and Physical Meteorology, 1998, 50(2): 128-150. doi: 10.3402/tellusb.v50i2.16030
[9] Vanneste M, Sultan N, Garziglia S, et al. Seafloor instabilities and sediment deformation processes: the need for integrated, multi-disciplinary investigations[J]. Marine Geology, 2014, 352: 183-214. doi: 10.1016/j.margeo.2014.01.005
[10] Harbitz C B. Model simulations of tsunamis generated by the Storegga slides[J]. Marine Geology, 1992, 105(1-4): 1-21. doi: 10.1016/0025-3227(92)90178-K
[11] 李飞权, 张选明, 张鹏, 等.海洋潜标系统的设计和应用[J].海洋技术, 2004, 23(1): 17-21. doi: 10.3969/j.issn.1003-2029.2004.01.004
LI Feiquan, ZHANG Xuanming, ZHANG Peng, et al. The design and application of marine submersible buoy system[J]. Ocean Technology, 2004, 23(1): 17-21. doi: 10.3969/j.issn.1003-2029.2004.01.004
[12] 杨坤汉.试论潜标系统在我国海洋事业中的地位和作用[J].海洋技术, 1989, 8(1): 77-88. http://www.cnki.com.cn/Article/CJFDTotal-HYJS198901015.htm
YANG Kunhan. On the role of subsurface mooring system in oceanographic research in China[J]. Ocean Technology, 1989, 8(1): 77-88. http://www.cnki.com.cn/Article/CJFDTotal-HYJS198901015.htm
[13] Tengberg A, De Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography - a review of design, technical solutions and functioning[J]. Progress in Oceanography, 1995, 35(3): 253-294. doi: 10.1016/0079-6611(95)00009-6
[14] Smith Jr K L, Glatts R C, Baldwin R J, et al. An autonomous. bottom-transecting vehicle for making long time-series measurements of sediment community oxygen consumption to abyssal depths[J]. Limnology and Oceanography, 1997, 42(7): 1601-1612. doi: 10.4319/lo.1997.42.7.1601
[15] Pfannkuche O, Linke P. GEOMAR landers as long-term deep-sea observatories[J]. Sea Technology, 2003, 44(9): 50-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0f59a1ae28f5f04684f02d836c3fc0d1
[16] Beranzoli L, De Santis A, Etiope G, et al. GEOSTAR: a geophysical and oceanographic station for abyssal research[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 175-183. doi: 10.1016/S0031-9201(98)00094-6
[17] 汪品先.从海洋内部研究海洋[J].地球科学进展, 2013, 28(5): 517-520. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201305001
WANG Pinxian. Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28(5): 517-520. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201305001
[18] 徐如彦, 沈宁, 倪佐涛, 等.自升式连体潜标测量系统的设计与实施[J].海洋科学, 2014, 38(12): 94-98. doi: 10.11759/hykx20131028003
XU Ruyan, SHEN Ning, NI Zuotao, et al. Design and analysis of the self-elevating double submerged buoy measurement system[J]. Marine Sciences, 2014, 38(12): 94-98. doi: 10.11759/hykx20131028003
[19] 赵广涛, 于新生, 李欣, 等. Benvir:一个深海海底边界层原位监测装置[J].高技术通讯, 2015, 25(1): 54-60. http://d.old.wanfangdata.com.cn/Periodical/gjstx98201501008
ZHAO Guangtao, YU Xinsheng, LI Xin, et al. Benvir: a in situ Deep-sea observation system for Benthic environmental monitoring[J]. High Technology Letters, 2015, 25(1): 54-60. http://d.old.wanfangdata.com.cn/Periodical/gjstx98201501008
[20] 赵广涛, 徐翠玲, 张晓东, 等.海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J].中国海洋大学学报, 2014, 44(12): 73-81. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201412011
ZHAO Guangtao, XU Cuiling, ZHANG Xiaodong, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface[J]. Periodical of Ocean University of China, 2014, 44(12): 73-81. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201412011
[21] 胡刚, 赵铁虎, 章雪挺, 等.天然气水合物赋存区近海底环境原位观测系统集成与实现[J].海洋地质前沿, 2015, 31(6): 30-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201506005
HU Gang, ZHAO Tiehu, ZHANG Xueting, et al. Integration and implementation of seabed environment in-situ monitoring systems in natural gas hydrate area[J]. Marine Geology Frontiers, 2015, 31(6): 30-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201506005
[22] Wiesenburg D A, Guinasso Jr N L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water[J]. Journal of Chemical and Engineering Data, 1979, 24(4): 356-360. doi: 10.1021/je60083a006
[23] 梁前勇, 赵静, 夏真, 等.南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨[J].地学前缘, 2017, 24(4): 89-101. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704010
LIANG Qianyong, ZHAO Jing, XIA Zhen, et al. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 89-101. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704010
[24] Tilbrook B D, Karl D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre[J]. Marine Chemistry, 1995, 49(1): 51-64. doi: 10.1016/0304-4203(94)00058-L
[25] Watanabe S, Higashitani N, Tsurushima N, et al. Methane in the western North Pacific[J]. Journal of Oceanography, 1995, 51(1): 39-60. doi: 10.1007/BF02235935
[26] 何雨旸.白云凹陷东南部近海底溶解甲烷浓度变化及其对冷泉活动的指示意义[D].青岛: 中国海洋大学硕士学位论文, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10423-1014204218.htm HE Yuyang. Changes of dissolved methane at near sea bottom and its implication to active seep area at southeast Baiyun Sag[D]. Qingdao: Master's Thesis of Ocean University of China, 2014.
-