IODP349航次地热调查数据分析

张文涛, 许鹤华, 杨小秋. IODP349航次地热调查数据分析[J]. 海洋地质与第四纪地质, 2018, 38(2): 156-164. doi: 10.16562/j.cnki.0256-1492.2018.02.016
引用本文: 张文涛, 许鹤华, 杨小秋. IODP349航次地热调查数据分析[J]. 海洋地质与第四纪地质, 2018, 38(2): 156-164. doi: 10.16562/j.cnki.0256-1492.2018.02.016
ZHANG Wentao, XU Hehua, YANG Xiaoqiu. Geothermal data processing and analysis for IODP Expedition 349[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 156-164. doi: 10.16562/j.cnki.0256-1492.2018.02.016
Citation: ZHANG Wentao, XU Hehua, YANG Xiaoqiu. Geothermal data processing and analysis for IODP Expedition 349[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 156-164. doi: 10.16562/j.cnki.0256-1492.2018.02.016

IODP349航次地热调查数据分析

  • 基金项目:
    中国科学院战略性先导科技专项(A类)(XDA13010303);国家自然科学基金(41376061,91428205)
详细信息
    作者简介: 张文涛(1994—),男,硕士生,主要从事地球动力学和数值模拟研究,E-mail:zhangwentao16@mails.ucas.ac.cn
    通讯作者: 许鹤华(1965—),男,副研究员,硕导,E-mail:xhhcn@scsio.ac.cn
  • 中图分类号: P744

  • 周立君编辑

Geothermal data processing and analysis for IODP Expedition 349

More Information
  • 海底热流是研究大洋地壳和上地幔岩石圈热状态的重要参数。为了解南海深水区地热特征,利用IODP349航次地热调查资料进行数据处理,得到了4个站位浅层热导率数据和3个钻孔的海底热流数据。结果表明,浅层沉积物样品热导率变化范围为0.8~2.2 W/(m·K),变化范围与沉积物成分有关,热导率随深度的增加有小幅增加的趋势与沉积物压实作用有关;U1431D、U1432C和U1433A三个钻孔热流值分别为24±8 mW/m2、105±3 mW/m2和89±2 mW/m2,后两个钻孔通过与前人实测数据进行对比,与前人结果相当,表明了结果的可靠性;U1431D发生地温梯度倒转和低热流异常可能是与钻孔处于水热循环的下降流附近有关。

  • 加载中
  • 图 1  IODP349航次站位和南海热流站位分布

    Figure 1. 

    图 2  APCT-3结构示意图

    Figure 2. 

    图 3  APCT-3测温曲线

    Figure 3. 

    图 4  TK04热导率测量仪(左)及VLQ探针和HLQ探针(右) (图片来源:http://www.te-ka.de/index.php/en/thermal-conductivity)

    Figure 4. 

    图 5  3个站位的沉积物温度与地温梯度曲线

    Figure 5. 

    图 6  4个站位浅层(深度小于120m)样品热导率随深度变化图像

    Figure 6. 

    表 1  标准针状探针(VLQ)和标准接触式探针(HLQ)的技术指标

    Table 1.  Specifications of standard needle probe(VLQ) and standard contact probe(HLQ)

    名称标准针状探针(VLQ)标准接触式探针(HLQ)
    测量方法全空间/实验室半空间/实验室
    外形尺寸长70mm,直径2mm高30mm,直径88mm
    测量范围0.1~10 W/(m·K)0.3~l0 W/(m·K)
    精度±2%±2%
    单次测量时间80s80s
    最小测量样品长75mm,直径30mm高15mm,直径80mm
    下载: 导出CSV

    表 3  U1432C钻孔热流测量数据对比

    Table 3.  Comparing of heat flow results from Hole U1432C

    U1432C中美合作中部剖面南段*1148A孔[11]**
    地温梯度/(℃/km)91.672~154(平均116)83
    浅层热导率/W/(m·K)0.88~1.370.84~0.870.85~1.17
    热流/(mW/m2)105±361~163(平均98)84±2
    注:*比较时选取与U1432C钻孔邻近的剖面南段7A-9W号共31个数据[10]**热流采用Bullard法计算,计算深度为120m。
    下载: 导出CSV

    表 2  IODP349航次钻孔热流数据

    Table 2.  Heat flow data from holes of IODP Expedition 349

    站位经度(E)纬度(N)水深/m计算深度/mbsf地温梯度/℃/km平均热导率/W/(m·K)热流/mW/m2
    U1431D117.00 °15.38°4240.4660.244.81.0624±8
    U1432C116.39°18.35°3829.0460.2~117.2
    100.5
    -10.9
    91.6
    1.32
    1.10
    105±3
    U1433A115.05°12.92°4379.35122.982.41.0989±2
    下载: 导出CSV

    表 4  U1433A钻孔热流测量数据对比

    Table 4.  Comparison of heat flow results from Hole U1433A

    U1433A中美合作西南海盆剖面中段*
    地温梯度/(℃/km)82.4
    浅层热导率/W/(m·K)1.02~1.14
    热流/mW·m-289±270~109(平均89)
    注:*比较时选取与U1433A钻孔邻近的测站并舍去2个低异常值点共7个测站数据[9]
    下载: 导出CSV
  • [1]

    李官保, 裴彦良, 刘保华.海底热流探测技术综述[J].地球物理学进展, 2005, 20(3): 611-619. doi: 10.3969/j.issn.1004-2903.2005.03.005

    LI Guanbao, PEI Yanliang, LIU Baohua. Review of measurement techniques of seafloor heat flow[J]. Progress in Geophysics, 2005, 20(3): 611-619. doi: 10.3969/j.issn.1004-2903.2005.03.005

    [2]

    汪品先.南海——我国深海研究的突破口[J].热带海洋学报, 2009, 28(3): 1-4. doi: 10.3969/j.issn.1009-5470.2009.03.001

    WANG Pingxian. Toward scientific breakthrough in the South China Sea[J]. Journal of Tropical Oceanography, 2009, 28(3): 1-4. doi: 10.3969/j.issn.1009-5470.2009.03.001

    [3]

    徐行, 罗贤虎, 许鹤华, 等.南海地热流探测、研究与展望[J].南海地质研究, 2015(1): 1-18. http://www.cnki.com.cn/Article/CJFDTotal-NHDZ201500001.htm

    XU Xing, LUO Xianhu, XU Hehua, et al. The measurement, review and prospect on geothermal studies of the South China Sea[J]. Geological Research of South China Sea, 2015(1): 1-18. http://www.cnki.com.cn/Article/CJFDTotal-NHDZ201500001.htm

    [4]

    李春峰, 宋晓晓.国际大洋发现计划IODP349航次[J].上海国土资源, 2014, 35(2): 43-48. doi: 10.3969/j.issn.2095-1329.2014.02.012

    LI Chunfeng, SONG Xiaoxiao. International Ocean Discovery Program (IODP) expedition 349[J]. Shanghai Land & Resources, 2014, 35(2): 43-48. doi: 10.3969/j.issn.2095-1329.2014.02.012

    [5]

    International Ocean Discovery Program. Illuminating earth's past, present, and future: IODP Science Plan for 2013-2023[R]. Washington DC: Integrated Ocean Drilling Program, 2011.

    [6]

    Li C F, Lin J, Kulhanek D K, the Expedition 349 Scientists. Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics[R]. College Station, TX: International Ocean Discovery Program, 2015.

    [7]

    施小斌, 丘学林, 夏戡原, 等.南海热流特征及其构造意义[J].热带海洋学报, 2003, 22(2): 63-73. doi: 10.3969/j.issn.1009-5470.2003.02.007

    SHI Xiaobin, QIU Xuelin, XIA Kanyuan, et al. Heat flow characteristics and its tectonic significance of South China Sea[J]. Journal of Tropical Oceanography, 2003, 22(2): 63-73. doi: 10.3969/j.issn.1009-5470.2003.02.007

    [8]

    Li C F, Shi X B, Zhou Z Y, et al. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications[J]. Geophysical Journal International, 2010, 182(3): 1229-1247. doi: 10.1111/j.1365-246X.2010.04702.x

    [9]

    姚伯初, 曾维军, HAYES D E, 等.中美合作调研南海地质专报[M].武汉:中国地质大学出版社, 1994: 34-140.

    YAO Bochi, ZENG Weijun, HAYES D E, et al. The Geological Memoir of South China Sea Surveyed Jointly by China & USA[M]. Wuhan: China University of Geosciences Press, 1994: 34-140.

    [10]

    Niseen S S, Hayes D E, Yao B C. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea[J]. Journal of Geophysical Research, 1995, 100(B11): 22447-22483. doi: 10.1029/95JB01868

    [11]

    Wang P, Prell W L, Blum P, et al. Proceedings of the ocean drilling program, initial reports, 184[R]. College Station, TX: Ocean Drilling Program, 2000.

    [12]

    Shyu C T, Hsu S K, Liu C S. Heat flows off Southwest Taiwan: measurements over mud diapirs and estimated from bottom simulating reflectors[J]. Terrestrial, Atmospheric and Oceanic Sciences, 1998, 9(4): 795-812. doi: 10.3319/TAO.1998.9.4.795(TAICRUST)

    [13]

    徐行, 施小斌, 罗贤虎, 等.南海西沙海槽地区的海底热流测量[J].海洋地质与第四纪地质, 2006, 26(4): 51-58. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=cf4aa6a4-2b14-48fb-838a-dec37857f171

    XU Xing, SHI Xiaobin, LUO Xianhu, et al. Heat flow measurements in the Xisha trough of the South China Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 51-58. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=cf4aa6a4-2b14-48fb-838a-dec37857f171

    [14]

    李亚敏, 罗贤虎, 徐行, 等.南海北部陆坡深水区的海底原位热流测量[J].地球物理学报, 2010, 53(9): 2161-2170. doi: 10.3969/j.issn.0001-5733.2010.09.016

    LI Yamin, LUO Xianhu, Xu Xing, et al. Seafloor in-situ heat flow measurements in the deep-water area of the northern slope, South China Sea[J]. Chinese Journal of Geophysics, 2010, 53(9): 2161-2170. doi: 10.3969/j.issn.0001-5733.2010.09.016

    [15]

    黄磊, 陈泓君, 高红芳, 等.南海中央海盆热流特征及成因[J].海洋地质前沿, 2013, 29(11): 39-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201311006

    HUANG Lei, CHEN Hongjun, GAO Hongfang, et al. Characteristics and genesis of geotherm in the central basin of South China Sea[J]. Marine Geology Frontiers, 2013, 29(11): 39-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201311006

    [16]

    Shyu C T, Chen Y J, Chiang S T, et al. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(4): 845-869. doi: 10.3319/TAO.2006.17.4.845(GH)

    [17]

    张毅, 何丽娟, 徐行, 等.南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究[J].地球物理学进展, 2009, 24(1): 183-194. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200901024

    ZHANG Yi, HE Lijuan, XU Xing, et al. The disagreement between BSRs and the base of methane hydrate stability zones in the Shenhu Area north of the South China Sea[J]. Progress in Geophysics, 2009, 24(1): 183-194. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200901024

    [18]

    何丽娟, 雷兴林, 张毅.南海北部神狐海域天然气水合物形成聚集的数值模拟研究[J].地球物理学报, 2011, 54(5): 1285-1292. doi: 10.3969/j.issn.0001-5733.2011.05.017

    HE Lijuan, LEI Xinglin, ZHANU Yi. Numerical modeling of gas hydrate accumulation in the marine sediments of Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(5): 1285-1292. doi: 10.3969/j.issn.0001-5733.2011.05.017

    [19]

    罗贤虎, 徐行, 施小斌, 等.室内海底沉积物热导率测量的原理与方法——以TK04热导率测量系统为例[J].海洋技术, 2008, 27(2): 88-91. doi: 10.3969/j.issn.1003-2029.2008.02.020

    LUO Xianhu, XU Xing, SHI Xiaobing, et al. Principle and method of submarine sediment thermal conductivity measurement in laboratory-with TK04 thermal conductivity measurement system as example[J]. Ocean Technology, 2008, 27(2): 88-91. doi: 10.3969/j.issn.1003-2029.2008.02.020

    [20]

    Horai K I, Von Herzen R P. Measurement of heat flow on Leg 86 of the deep sea drilling project[C]//Initial Reports of the Deep Sea Drilling Project, 86. Washington, DC: U.S. Government Printing Office, 1985: 759-777.

    [21]

    Pfender M, Villinger H. Miniaturized data loggers for deep sea sediment temperature gradient measurements[J]. Marine Geology, 2002, 186(3-4): 557-570. doi: 10.1016/S0025-3227(02)00213-X

    [22]

    Kasubuchi T. Twin transient-state cylindrical-probe method for the determination of the thermal conductivity of soil[J].Soil Science, 1977, 124(5):255-258. doi: 10.1097/00010694-197711000-00001

    [23]

    Bullard E C. The flow of heat through the floor of the Atlantic Ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1954, 222(1150): 408-429. doi: 10.1098/rspa.1954.0085

    [24]

    Ratcliffe E H. The thermal conductivities of ocean sediments[J]. Journal of Geophysical Research, 1960, 65(5): 1535-1541. doi: 10.1029/JZ065i005p01535

    [25]

    Hyndman R D, Erickson A J, Von Herzen R P. Geothermal measurements on DSDP Leg 26[C]//Initial Reports of the Deep Sea Drilling Project, 26. Washington: U.S. Government Printing Office, 1974: 675-742.

    [26]

    许鹤华, 马辉, 宋海斌, 等.南海东部海盆扩张过程的数值模拟[J].地球物理学报, 2011, 54(12): 3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008

    XU Hehua, MA Hui, SONG Haibin, et al. Numerical simulation of Eastern South China Sea basin expansion[J]. Chinese Journal of Geophysics, 2011, 54(12): 3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008

    [27]

    施小斌, 于传海, 陈梅, 等.南海北部陆缘热流变化特征及其影响因素分析[J].地学前缘, 2017, 24(3): 56-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703005

    SHI Xiaobin, YU Chuanhai, CHEN Mei, et al. Analyses of variation features and influential factors of heat flow in the northern margin of the South China Sea[J]. Earth Science Frontiers, 2017, 24(3): 56-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703005

    [28]

    张健, 李家彪.南海西南海盆壳幔结构重力反演与热模拟分析[J].地球物理学报, 2011, 54(12): 3026-3037. doi: 10.3969/j.issn.0001-5733.2011.12.005

    ZHANG Jian, LI Jiabiao. Gravity inversion and thermal modeling about the crust-mantle structure of Southwest basin in the South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3026-3037. doi: 10.3969/j.issn.0001-5733.2011.12.005

    [29]

    李学伦.海洋岩石圈的热模式及海底地壳的地热水对流[J].海洋通报, 1982, 1(6): 85-92. http://www.cnki.com.cn/Article/CJFDTotal-HUTB198206011.htm

    LI Xuelun. The thermal model of the oceanic lithosphere and the geothermal convection of the seabed crust[J]. Marine Science Bulletin, 1982, 1(6): 85-92. http://www.cnki.com.cn/Article/CJFDTotal-HUTB198206011.htm

    [30]

    施小斌, 杨小秋, 赵俊峰, 等.海底下的水热活动与南海海山区海底热流探测[C]//中国地球物理学会第二十七届年会论文集.长沙: 中国地球物理学会, 2011.http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=7627881

    SHI Xiaobin, YANG Xiaoqiu, ZHAO Junfeng, et al. Hydrothermal circulation under seafloor and coming seafloor heat flow investigation in the mountainous basin of the South China Sea[C]//China Geophysical Society Twenty-Seventh Annual Conference Proceedings. Changsha: China Geophysical Society, 2011.

    [31]

    Fisher A T, Stein C A, Harris R N, et al. Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate[J]. Geophysical Research Letters, 2003, 30(11): 1550. doi: 10.1029/2002GL016766

  • 加载中

(6)

(4)

计量
  • 文章访问数:  1903
  • PDF下载数:  87
  • 施引文献:  0
出版历程
收稿日期:  2017-05-06
修回日期:  2017-07-26
刊出日期:  2018-04-28

目录