雅浦岛弧变质岩成因和构造环境研究

张吉, 张国良. 雅浦岛弧变质岩成因和构造环境研究[J]. 海洋地质与第四纪地质, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006
引用本文: 张吉, 张国良. 雅浦岛弧变质岩成因和构造环境研究[J]. 海洋地质与第四纪地质, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006
ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006
Citation: ZHANG Ji, ZHANG Guoliang. Origin and tectonic setting of metamorphic rocks in the Yap Island Arc[J]. Marine Geology & Quaternary Geology, 2018, 38(4): 71-82. doi: 10.16562/j.cnki.0256-1492.2018.04.006

雅浦岛弧变质岩成因和构造环境研究

  • 基金项目:
    国家自然科学基金-优秀青年科学基金项目:“海洋岩石学与地幔地球化学” (41522602);中国科学院战略性先导科技专项(A类)子课题“海山的物质组成和底质环境”之专题1:“典型海山的岩石结构和物质组成” (XDA11030103);青岛海洋科学与技术国家实验室“鳌山人才”优秀青年学者项目(2015ASTP)
详细信息
    作者简介: 张吉(1992—), 男, 硕士生, 海洋地质学专业, 主要从事大洋岩石学和地球化学研究
    通讯作者: 张国良(1981—), 男, 研究员, 主要从事大洋岩石学与地幔地球化学研究, E-mail:zhangguoliang@qdio.ac.cn
  • 中图分类号: P736.1

  • 周立君编辑

Origin and tectonic setting of metamorphic rocks in the Yap Island Arc

More Information
  • 雅浦岛弧基本由变质岩组成, 与西太平洋的其他岛弧具有显著区别。利用在雅浦岛弧获得的变质岩样品, 研究了角闪岩的变质温压条件, 并进一步探讨了雅浦岛弧变质岩的构造环境, 以及加罗林洋底高原及海山的俯冲侵蚀对雅浦岛弧的影响。雅浦岛弧变质岩的矿物组合结果显示, 其变质相为角闪岩相和绿片岩相; 对雅浦岛弧变质岩进行了电子探针微区分析, 采用角闪石单矿物温度压力计、斜长石-角闪石Na-Ca交换温度计和角闪石-斜长石Al-Si压力计来计算变质P-T条件。矿物温压计的估算结果表明, 雅浦岛弧角闪岩变质P-T条件为493.6~630℃/3.8~6kbar, 为中等P/T型变质相系。结合矿物组合及温压计估算结果, 认为雅浦变质岩可能经历了岛弧区域变质作用。雅浦变质岩代表的构造环境为雅浦岛弧基底。雅浦角闪岩的埋藏深度大约为15~20km, 雅浦岛弧变质岩的出露是俯冲侵蚀的结果。加罗林洋底高原及海山促进了雅浦岛弧俯冲侵蚀的发育, 使得雅浦岛弧的弧前地区甚至岛弧都遭受侵蚀, 导致变质岩基底出露于海底。

  • 加载中
  • 图 1  西太平洋雅浦岛弧区域地质概况及雅浦岛与采样区相对位置

    Figure 1. 

    图 2  雅浦角闪岩(Y3-9-10)和绿片岩(Y3-9-12)样品的显微图像及背散射电子图像

    Figure 2. 

    图 3  钙质角闪石化学分类及定名

    Figure 3. 

    图 4  斜长石及钾钠长石化学分类

    Figure 4. 

    图 5  不同构造背景下变质相的P-T图解

    Figure 5. 

    图 6  雅浦岛弧变质基底及俯冲侵蚀模式图 (据文献[40]修改)

    Figure 6. 

    表 1  雅浦岛弧变质岩样品的岩相学特征及其变质相

    Table 1.  Mineral assemblages of metamorphic facies at the Yap arc

    样品 岩性 岩相学特征 变质相
    Y3-9-6 角闪岩 变晶结构,致密块状构造,主要矿物组合:角闪石+斜长石(拉长石);少量钠长石,辉石,褐铁矿 角闪岩相
    Y3-9-8 角闪岩 变品结构,片状至弱片麻状构造,主要矿物组合:角闪石+斜长石(更长石);少量钾长石、钠长石、黑云母、辉石、绿泥石、榍石,磁铁矿、钛铁矿 角闪岩相
    Y3-9-10 角闪岩 变晶结构,致密块状构造,主要矿物组合:角闪石+斜长石(中长石、拉拉长石);少量钾长石、钠长石.辉石、榍石、沸石、磁铁矿、钛铁矿 角闪岩相
    Y3-9-12 绿片岩 变晶结构,片状构造,中等蚀变,主要矿物组合:绿帘石+绿泥石+阳起石+斜长石(更、中、拉、倍长石);少量沸石、磁铁矿 绿片岩相
    Y30059-1 角闪岩 变晶结构,致密块状构造,主要矿物组合:角闪石+斜长石(中长石);少量钠长石、钛铁矿、榍石、绿泥石、沸石 角闪岩相
    下载: 导出CSV

    表 2  雅浦岛弧角闪岩样品代表性角闪石、单斜辉石和长石电子探针数据及相应离子数

    Table 2.  Representative mineral chemical composition of amphiboles, clinopyroxenes and feldsparsin amphibolites samples of Yap arc

    角闪石 Y3-9-6 Y3-9-8 Y3-9-10 Y30059-1 单斜辉石 Y3-9-6 Y3-9-8 Y3-9-10
    N=25 N=14 N=16 N=12 N=1 N=2 N=9
    SiO2 45.24 44.92 45.02 44.59 SiO2 51.70 45.50 52.33
    TiO2 1.20 0.82 0.88 1.74 TiO2 0.25 0.78 0.12
    Al2O3 10.45 10.62 9.53 9.95 Al2O3 2.75 9.53 1.45
    Cr2O3 0.13 0.08 0.07 0.05 Cr2O3 0.03 0.12 0.02
    FeO 15.93 13.35 15.74 13.70 FeO 10.19 12.92 8.48
    MnO 0.29 0.26 0.34 0.31 MnO 0.35 0.24 0.42
    MgO 12.11 13.14 12.34 18.23 MgO 12.64 13.65 13.22
    CaO 10.97 11.79 11.85 11.42 CaO 21.37 11.91 23.25
    Na2O 1.86 1.68 1.30 1.66 Na2O 0.58 1.65 0.44
    K2O 0.08 0.81 0.69 0.86 K2O 0.03 0.71 0.02
    Total 98.26 97.47 97.76 97.50 Total 100.40 97.00 99.75
    T位 Si 6.52 6.55 6.59 6.51 Si 1.93 1.76 1.96
    Al 1.48 1.45 1.41 1.49 Al 0.07 0.24 0.04
    Ti(Ⅳ) 0.00 0.00 0.00 0.00 Al 0.06 0.19 0.03
    C位 Al 0.30 0.38 0.23 0.22 Ti 0.01 0.02 0.02
    Ti 0.13 0.09 0.10 0.19 Cr 0.00 0.00 0.00
    Cr 0.01 0.01 0.01 0.01 Fe3+ 0.06 0.24 0.05
    Fe3+ 0.98 0.56 0.76 0.69 Fe2+ 0.27 0.17 0.21
    Fe2+ 0.94 1.07 1.17 0.98 Mn 0.01 0.01 0.01
    Mg 2.60 2.86 2.69 2.88 Mg 0.72 0.79 0.74
    Mn 0.04 0.03 0.04 0.04 Ca 0.86 0.49 0.93
    B位 Fe2+ 0.00 0.00 0.00 0.00 Na 0.04 0.12 0.03
    Ca 1.70 1.84 1.86 1.79 K 0.00 0.04 0.00
    Na 0.30 0.16 0.11 0.21
    A位 Na 0.21 0.32 0.23 0.26 Wo 44.82 29.06 47.86
    K 0.01 0.15 0.13 0.16 En 37.49 46.36 37.89
    Total 0.23 0.47 0.36 0.42 Fs 17.69 24.58 14.25
    长石 Y3-9-6 Y3-9-8 Y3-9-10 Y3-9-12 Y30059-1
    钠长石 拉长石 钾长石 钠长石 更长石 钾长石 钠长石 中长石 拉长石 更长石 中长石 拉长石 倍长石 中长石
    N=7 N=7 N=5 N=ll N=6 N=15 N=2 N=ll N=7 N=7 N=2 N=2 N=4 N=23
    SiO2 59.78 52.51 63.54 65.58 62.56 64.27 64.25 56.72 54.32 64.03 61.41 53.21 48.63 57.89
    Al2O3 32.04 29.94 17.93 21.71 23.25 18.31 25.24 27.17 28.21 23.48 26.16 29.06 32.40 26.15
    FeO 0.07 0.29 0.16 0.18 0.24 0.06 0.16 0.24 0.27 0.22 0.16 0.20 0.31 0.28
    CaO 0.81 12.83 0.04 1.32 3.96 0.04 0.77 9.07 11.01 4.24 7.62 11.90 15.84 8.38
    Na2O 6.94 4.30 0.16 9.52 8.92 0.30 8.58 6.16 5.17 8.88 4.89 4.74 2.54 6.78
    K2O 0.02 0.03 17.05 1.45 0.74 17.25 0.23 0.23 0.21 0.25 0.08 0.03 0.03 0.21
    Total 99.67 99.90 98.88 99.75 99.66 100.22 99.22 99.60 99.18 101.09 100.32 99.13 99.75 99.68
    Si 2.60 2.39 2.99 2.89 2.78 2.98 2.82 2.56 2.47 2.80 2.70 2.43 2.23 2.60
    AI 1.64 1.60 0.99 1.13 1.22 1.00 1.30 1.44 1.51 1.21 1.35 1.56 1.75 1.39
    Fe 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
    Ca 0.04 0.62 0.00 0.06 0.19 0.00 0.04 0.44 0.54 0.20 0.36 0.58 0.78 0.40
    Na 0.59 0.38 0.01 0.81 0.77 0.03 0.73 0.54 0.46 0.75 0.42 0.42 0.23 0.59
    K 0.00 0.00 1.02 0.08 0.04 1.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01
    Total 4.87 5.00 5.03 4.99 5.01 5.04 4.90 5.00 5.00 4.98 4.84 5.00 5.00 5.01
    An 6.07 62.14 0.18 6.51 18.86 0.20 4.62 44.28 53.42 20.57 46.02 58.03 77.37 40.09
    Ab 93.71 37.68 1.37 84.99 76.94 2.57 93.75 54.37 45.37 77.97 53.41 41.82 22.45 58.73
    注,角闪石中的Fe3+由Holland等[27]方法计算:单斜辉石中的Fe3+通过化学计量平衡和电价平衡规则[31, 32]估算。
    下载: 导出CSV

    表 3  雅浦岛弧角闪岩变质温压条件计算结果

    Table 3.  P-T estimates for the metamorphism of amphibolite samples in Yap arc

    P-T 角闪石单矿物温度压力计 斜长石-角闪石 Na-Ca温度计/℃ 角闪石-斜长石 Al-Si压力计/kbar
    温度/℃ 压力/kbar
    Y3-9-6 566.6~611, 6 4.7~5.8
    Y3-9-8 572.2~630.1 5.0~6.0
    Y3-9-10 493.6~620.6 3.8~5.7 721~851 1.4~5.9
    Y3005-1 582.4~625.6 4.6~5.5 742~822 2.3~4.8
    下载: 导出CSV
  • [1]

    Leat P T, Larter R.Intra-oceanic subduction systems:introduction[J].Geological Society, London, Special Publications, 2003, 219 (1) :1-17. doi: 10.1144/GSL.SP.2003.219.01.01

    [2]

    Stern R J, Smoot N C, Rubin M.Unzipping of the volcano arc, Japan[J].Tectonophysics, 1984, 102 (1-4) :153-174. doi: 10.1016/0040-1951(84)90012-X

    [3]

    Matsuda J-Ⅰ, Zashu S, Ozima M.Sr isotopic studies of volcanic rocks from island arcs in the western pacific[J].Tectonophysics, 1977, 37 (1-3) :141-151. doi: 10.1016/0040-1951(77)90044-0

    [4]

    Ohara Y.Peridotites and volcanics from the Yap arc system:implications for tectonics of the southern Philippine Sea Plate[J].Chemical Geology, 2002, 189 (1) :35-53. https://www.sciencedirect.com/science/article/abs/pii/S0009254102000621

    [5]

    Shiraki K.Metamorphic basement rocks of Yap Islands, Western Pacific:possible oceanic crust beneath an island arc[J].Earth and Planetary Science Letters, 1971, 13 (1) :167-174. doi: 10.1016/0012-821X(71)90120-8

    [6]

    Hawkins J and Batiza R.Metamorphic rocks of the Yap arctrench system[J].Earth and Planetary Science Letters, 1977, 37 (2) :216-229. doi: 10.1016/0012-821X(77)90166-2

    [7]

    Kobayashi K.Origin of the Palau and Yap trench-arc systems[J].Geophysical Journal International, 2004, 157 (3) :1303-1315. doi: 10.1111/j.1365-246X.2003.02244.x

    [8]

    Sato T, Matsu'ura M.A kinematic model for evolution of island arc-trench systems[J].Geophysical Journal International, 1993, 114 (3) :512-530. doi: 10.1111/j.1365-246X.1993.tb06984.x

    [9]

    Kim Y-M, Lee S-M, Okino K.Comparison of gravity anomaly between mature and immature intra-oceanic subduction zones in the western Pacific[J].Tectonophysics, 2009, 474 (3-4) :657-673. doi: 10.1016/j.tecto.2009.05.004

    [10]

    Fujiwara T, Tamura C, Nishizawa A, et al.Morphology and tectonics of the Yap Trench[J].Marine Geophysical Researches, 2000, 21 (1) :69-86. https://link.springer.com/article/10.1023/A%3A1004781927661

    [11]

    张正一, 董冬冬, 张广旭, 等.板块俯冲侵蚀雅浦岛弧的地形制约[J].海洋地质与第四纪地质, 2017, 37 (1) :41-50. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201701006.htm

    ZHANG Zhengyi, DONG Dongdong, ZHANG Guangxu, et al.Topgraphic constraints on the subduction erosion of the Yap arc, west Pacific[J].Marine Geology and Quaternary Geology, 2017, 37 (1) :41-50. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201701006.htm

    [12]

    Shiraki K, Kuroda N, Maruyama S, et al.Evolution of the tertiary volcanic rocks in the Izu-Mariana arc[J].Bulletin Volcanologique, 1978, 41 (4) :548-562. doi: 10.1007/BF02597386

    [13]

    Beccaluva L, Macciotta G, Savelli C, et al.Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela basin) [J].1980, 23: 247-268.

    [14]

    CrawfordA J, Beccaluva L, Serri G, et al.Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches[J].Earth and Planetary Science Letters, 1986, 80 (3) :265-280. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM023p0247

    [15]

    McCabe R, Uyeda S.Hypothetical model for the bending of the Mariana Arc[C]//The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2.1983: 281-293.https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM027p0281

    [16]

    Pearce J A, Reagan M K, Petronotis K, et al.Izu-Bonin-Mariana fore arc:Testing subduction initiation and ophiolite models by drilling the outer Izu-Bonin-Mariana fore arc; 30 July-29 September 2014[J].Integrated Ocean Drilling Program:Preliminary Reports, 2015:352.

    [17]

    Lapierre H, Taylor R N, Rouer O, et al.Mineral Chemistry of Forearc Volcanic Rocks From the Izu-Bonin Arc, Holes 792 Eand 793 B1[J].1992, 126: 431-447.

    [18]

    Stern R J, Fouch M J, Klemperer S L.An Overview of the Izu-Bonin-Mariana Subduction Factory[C]//Inside the Subduction Factory.American Geophysical Union, 2013: 175-222.

    [19]

    Bracey D R.Reconnaissance Geophysical Survey of the Caroline Basin[J].Geological Society of America Bulletin, 1975, 86 (6) :775-784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2

    [20]

    Weissel J K, Anderson R N.Is there a Caroline plate?[J].Earth and Planetary Science Letters, 1978, 41 (2) :143-158. doi: 10.1016/0012-821X(78)90004-3

    [21]

    Sato T, Kasahara J, Katao H, et al.Seismic observations at the Yap Islands and the northern Yap Trench[J].Tectonophysics, 1997, 271 (3-4) :285-294. doi: 10.1016/S0040-1951(96)00251-X

    [22]

    Seno T, Stein S, Gripp A E.A model for the motion of the Philippine Sea plate consistent with NUVEL-1and geological data[J].Journal of Geophysical Research:Solid Earth, 1993, 98 (B10) :17941-17948. doi: 10.1029/93JB00782

    [23]

    Ryan W B F, Carbotte S M, Coplan J O, et al.Global MultiResolution Topography synthesis[J].Geochemistry, Geophysics, Geosystems, 2009, 10, Q03014, doi:10.1029/2008GC002332

    [24]

    Lai Z, Zhao G, Han Z, et al.The magma plumbing system in the Mariana Trough back-arc basin at 18°N[J].Journal of Marine Systems, 2018, 180:132-139. doi: 10.1016/j.jmarsys.2016.11.008

    [25]

    Gerya T, Perchuk L, Triboulet C, et al.Petrology of the Tumanshet zonal metamorphic complex, eastern Sayan[J].Petrology, 1997, 5 (6) :503-533.

    [26]

    Zenk M, Schulz B.Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland[J].Mineralogical Magazine, 2004, 68 (5) :769. doi: 10.1180/0026461046850218

    [27]

    Holland T and Blundy J.Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J].Contributions to Mineralogy and Petrology, 1994, 116 (4) :433-447. doi: 10.1007/BF00310910

    [28]

    Molina J, Moreno J, Castro A, et al.Calcic amphibole thermobarometry in metamorphic and igneous rocks:New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning[J].Lithos, 2015, 232:286-305. doi: 10.1016/j.lithos.2015.06.027

    [29]

    Leake B E, Woolley A R, Birch W D, et al.Nomenclature of amphiboles:additions and revisions to the International Mineralogical Association's amphibole nomenclature[J].Mineralogical Magazine, 2004, 68 (1) :209-215. doi: 10.1180/0026461046810182

    [30]

    Leake B E, Woolley A R, Arps C E, et al.Report.Nomenclature of amphiboles:report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names[J].Mineralogical Magazine, 1997, 61 (2) :295-321. http://d.old.wanfangdata.com.cn/NSTLQK/10.1180-minmag.1997.061.405.13/

    [31]

    Droop G.A general equation for estimating Fe3+concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria[J].Mineralogical Magazine, 1987, 51 (361) :431-435. doi: 10.1180/minmag.1987.051.361.10

    [32]

    Lepage L D.ILMAT:an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry[J].Computers & Geosciences, 2003, 29 (5) :673-678. https://www.sciencedirect.com/science/article/pii/S0098300403000426

    [33]

    Zenk M, Schulz B.Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland[J].Mineralogical Magazine, 2004, 68 (5) :769-786. doi: 10.1180/0026461046850218

    [34]

    Earle S.Physical Geology[M].USA:Create Space Independent Publishing Platform, 2016:171-174.

    [35]

    Brown M.P-T-t evolution of orogenic belts and the causes of regional metamorphism[J].Journal of the Geological Society, 1993, 150 (2) :227-241. doi: 10.1144/gsjgs.150.2.0227

    [36]

    Peacock S M.Thermal and Petrologic Structure of Subduction Zones[C]//Subduction top to bottom.American Geophysical Union, 1996: 119-133.

    [37]

    Rondenay S, Abers G A, van Keken P E.Seismic imaging of subduction zone metamorphism[J].Geology, 2008, 36 (4) :275-278. doi: 10.1130/G24112A.1

    [38]

    Wei C and Zhang Y.Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma[J].Chinese Science Bulletin, 2008, 53 (23) :3603-3614. doi: 10.1007/s11434-008-0405-3

    [39]

    Cloos M.Lithospheric buoyancy and collisional orogenesis:Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts[J].Geological Society of America Bulletin, 1993, 105 (6) :715-737. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2

    [40]

    Winter John D.Principles of Igneous and Metamorphic Petrology[M].USA:Pearson, 2010:563-565.

    [41]

    Zheng Y, Chen R, Xu Z, et al.The transport of water in subduction zones[J].Science China Earth Sciences, 2016, 59 (4) :651-682. doi: 10.1007/s11430-015-5258-4

    [42]

    Clift P, Vannucchi P.Controls on tectonic accretion versus erosion in subduction zones:Implications for the origin and recycling of the continental crust[J].Reviews of Geophysics, 2004, 42, RG2001, .doi:10.1029/2003RG000127.

    [43]

    von Huene R, Ranero C R, Vannucchi P.Generic model of subduction erosion[J].Geology, 2004, 32 (10) :913-916. doi: 10.1130/G20563.1

    [44]

    Kopp H, Flueh E R, Petersen C J, et al.The Java margin revisited:Evidence for subduction erosion off Java[J].Earth and Planetary Science Letters, 2006, 242 (1) :130-142. http://core.ac.uk/display/11892474

    [45]

    Kukowski N, Oncken O.Subduction Erosion—the"Normal"Mode of Fore-Arc Material Transfer along the Chilean Margin?[C]//The Andes: Active Subduction Orogeny.Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 217-236.https://link.springer.com/chapter/10.1007%2F978-3-540-48684-8_10

    [46]

    Stern C R.Subduction erosion:Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle[J].Gondwana Research, 2011, 20 (2-3) :284-308. doi: 10.1016/j.gr.2011.03.006

    [47]

    Johnson L, Fryer P.Oceanic plate material on the Mariana forearc[J].Eos, 1988, 69:1471.

    [48]

    Bloomer S H.Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench:Implications for its structure and evolution[J].Journal of Geophysical Research:Solid Earth, 1983, 88 (B9) :7411-7428. doi: 10.1029/JB088iB09p07411

    [49]

    Hilde T W C.Sediment subduction versus accretion around the pacific[J].Tectonophysics, 1983, 99 (2-4) :381-397. doi: 10.1016/0040-1951(83)90114-2

    [50]

    Lallemand S E, Schnürle P, Malavieille J.Coulomb theory applied to accretionary and nonaccretionary wedges:Possible causes for tectonic erosion and/or frontal accretion[J].Journal of Geophysical Research:Solid Earth, 1994, 99 (B6) :12033-12055. doi: 10.1029/94JB00124

    [51]

    Loveless J P, Pritchard M E, Kukowski N.Testing mechanisms of subduction zone segmentation and seismogenesis with slip distributions from recent Andean earthquakes[J].Tectonophysics, 2010, 495 (1-2) :15-33. doi: 10.1016/j.tecto.2009.05.008

    [52]

    Keating B H, Mattey D P, Helsley C E, et al.Evidence for a hot spot origin of the Caroline Islands[J].Journal of Geophysical Research:Solid Earth, 1984, 89 (B12) :9937-9948. doi: 10.1029/JB089iB12p09937

  • 加载中

(6)

(3)

计量
  • 文章访问数:  3042
  • PDF下载数:  124
  • 施引文献:  0
出版历程
收稿日期:  2017-07-25
修回日期:  2017-11-30
刊出日期:  2018-08-28

目录