生物标志物IP25在北极海冰变化重建中的研究进展

郝伟杰, 肖晓彤, 赵美训. 生物标志物IP25在北极海冰变化重建中的研究进展[J]. 海洋地质与第四纪地质, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801
引用本文: 郝伟杰, 肖晓彤, 赵美训. 生物标志物IP25在北极海冰变化重建中的研究进展[J]. 海洋地质与第四纪地质, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801
HAO Weijie, XIAO Xiaotong, ZHAO Meixun. The research progress of IP25 in Arctic Sea ice reconstruction[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801
Citation: HAO Weijie, XIAO Xiaotong, ZHAO Meixun. The research progress of IP25 in Arctic Sea ice reconstruction[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 56-65. doi: 10.16562/j.cnki.0256-1492.2018041801

生物标志物IP25在北极海冰变化重建中的研究进展

  • 基金项目:
    国家自然科学基金面上项目“北冰洋西部过去130ka海冰演变记录及其对碳循环的影响”(41876214)
详细信息
    作者简介: 郝伟杰(1993—),男,硕士研究生,主要从事海洋有机地球化学研究,E-mail:harmon_s@163.com
    通讯作者: 肖晓彤(1984—),女,副教授,主要从事海洋有机地球化学研究,E-mail:xtxiao@ouc.edu.cn
  • 中图分类号: P736.2

  • 周立君编辑

The research progress of IP25 in Arctic Sea ice reconstruction

More Information
  • 在全球变暖背景下,北极海冰覆盖面积持续减少,对全球的温盐环流、海洋生物化学过程和气候变化产生了深远的影响,研究北极古海冰的变化可以使我们对北极环境有全面的认识,更准确地预测其未来的变化规律。近十年来,一种新发展的海冰生物标志物IP25(Ice Proxy with 25 carbon atoms)被广泛用于北极及亚北极的海冰重建。IP25是北极冰藻产生的一种高度分化的单不饱和类异戊二烯(HBIs),能够稳定地保存在海洋沉积物中。自从IP25被发现以来,越来越多的研究者对其指示海冰变化的应用进行了深入的研究。本文首先总结了重建古海冰的传统指标和限制性并介绍了IP25指示海冰的原理、由定性到定量的发展以及存在的局限性。然后归纳了利用IP25重建北极地区海冰分布和变化的实例研究,涵盖了北冰洋中心、陆架边缘海、河口以及亚北极地区不同空间海域,跨越了近现代、全新世、第四纪以及中新世不同时间尺度。其中,近现代的海冰重建结果与海冰的卫星观测数据取得了很好的相关性,为古海冰的重建提供了基础;古海冰的重建为数值模拟古气候以及预测未来海冰变化趋势提供了重要依据。

  • 加载中
  • 图 2  不同海冰条件下沉积物中IP25和浮游植物生物标志物含量以及PIP25值的相对高低

    Figure 2. 

    图 1  本文中C25骨架高度支化的类异戊二烯结构

    Figure 1. 

    图 3  IP25在北极区域的研究情况

    Figure 3. 

  • [1]

    Thomas D N, Dieckmann G S. Sea Ice [M]. Oxford: Blackwell Publishing, 2010.

    [2]

    高众勇, 陈立奇, 蔡卫君, 等.全球变化中的北极碳汇:现状与未来[J].地球科学进展, 2007, 22(8):857-865. doi: 10.3321/j.issn:1001-8166.2007.08.012

    GAO Zhongyong, CHEN Liqi, CAI Weijun, et al. Arctic carbon sink in global Change: Present and future [J]. Advances in Earth Science, 2007, 22(8):857-865. doi: 10.3321/j.issn:1001-8166.2007.08.012

    [3]

    陈建芳, 金海燕, 李宏亮, 等.北极快速变化对北冰洋碳汇机制和过程的影响[J].科学通报, 2015, 60(35):3406-3416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201535002

    CHEN Jianfang, JIN Haiyan, LI Hongliang, et al. Carbon sink mechanism and processes in the Arctic Ocean under arctic rapid change [J]. Chinese Science Bulletin, 2015, 60(35):3406-3416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201535002

    [4]

    Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): 1-11. http://d.old.wanfangdata.com.cn/Periodical/hyxb201605007

    [5]

    Wang M, Overland J E. A sea ice free summer Arctic within 30years: An update from CMIP5 models[J]. Geophysical Research Letters, 2012, 36(7): 550-556.

    [6]

    Liu J, Song M, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[C]// Proceedings of the National Academy of Sciences of the United States of America. 2013, 110(31): 12571-12576.

    [7]

    刘萍.北极航道开通对满足我国能源需求的影响及路径分析[D].上海海洋大学, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10264-1016912769.htm

    LIU Ping. Waterway on the Energy Demand in China and Path Analysis[D]. Shanghai Ocean Univercity, 2016.

    [8]

    章陶亮, 王汝建, 陈志华, 等.西北冰洋楚科奇海台08P23孔氧同位素3期以来的古海洋与古气候记录[J].极地研究, 2014, 26(1): 46-57. http://d.old.wanfangdata.com.cn/Conference/8982851

    ZHANG Taoliang, WANG Rujian, CHEN Zhihua, et al. Paleoceanographic and paleoclimatic records of core 08P23 from the Chukchi Plateau, western Arctic Ocean, since MIS3[J]. Chinese Journal of Polar Reserch, 2014, 26(1): 46-57. http://d.old.wanfangdata.com.cn/Conference/8982851

    [9]

    Darby D A, Zimmerman P. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events[J]. Polar Research, 2010, 27(2):114-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003269444

    [10]

    O'Regan M, John K S, Moran K, et al. Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge[J]. Quaternary International, 2010, 219(1):168-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb75c39e35510524886b3a3eed52709a

    [11]

    John K S. Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the LomonosovRidge[J]. Paleoceanography, 2008, 23(1): PA1805.

    [12]

    Sarnthein M, Pflaumann U, Weinelt M. Past extent of sea ice in the northern North Atlantic inferred from foraminifer-alpaleotemperature estimates[J]. Paleoceanography&Paleoclimatology, 2003, 18(2): 1030. http://www.researchgate.net/publication/235703899_Past_extent_of_sea_ice_in_the_northern_North_Atlantic_inferred_from_foraminiferal_paleotemperature_estimates

    [13]

    Jiang H, Eiríksson J, Schulz M, et al. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene[J]. Geology, 2005, 33(1):73-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9af568bafbb706fb3a59cbf18722ed1

    [14]

    Vernal A D, Rochon A, Fréchette B, et al. Reconstructing past sea ice cover of the northern hemisphere from dinocyst assemblages: status of the approach[J]. Quaternary Science Reviews, 2013, 79(79):122-134. http://www.sciencedirect.com/science/article/pii/S0277379113002424

    [15]

    沙龙滨.格陵兰西部海域1200年以来硅藻记录及古气候、古海冰重建[D].华东师范大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10269-1012435884.htm

    SHA Longbin. Diatom-based reconstruction of palaeoclimatic changes and sea-ice concentration off West Greenland during the last 1200 years[D]. East China Normal University, 2012.

    [16]

    Schlüter M, Sauter E J, Schäfer A, et al. Spatial budget of organic carbon flux to the seafloor of the northern North Atlantic (60°N-80°N)[J]. Global Biogeochemical Cycles, 2000, 14(1):329-340. doi: 10.1029/1999GB900043

    [17]

    Knies J, Vogt C, Stein R. Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean[J]. Geo-Marine Letters, 1998, 18(3):195-202. doi: 10.1007/s003670050068

    [18]

    Belt S T, Massé G, Rowland S J, et al. A novel chemical fossil of palaeo sea ice: IP25 [J]. Organic Geochemistry, 2007, 38 (1): 16-27. doi: 10.1016/j.orggeochem.2006.09.013

    [19]

    Volkman J K, Barrett S M, Dunstan G A. C25 and C30highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms[J]. Organic Geochemistry, 1994, 21(3-4):407-414. doi: 10.1016/0146-6380(94)90202-X

    [20]

    Belt S T, Allard W G, Massé G, et al. Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers[J]. Geochimica et Cosmochimica Acta, 2000, 64(22):3839-3851. doi: 10.1016/S0016-7037(00)00464-6

    [21]

    Belt S T, Massé G, Allard W G, et al. C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus[J]. Organic Geochemistry, 2001, 32(10): 1271-1275. doi: 10.1016/S0146-6380(01)00111-5

    [22]

    Belt S T, Massé G, Allard W G, et al. Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis[J]. Organic Geochemistry, 2001, 32(9):1169-1172. doi: 10.1016/S0146-6380(01)00102-4

    [23]

    Belt S T, Allard W G, Massé G, et al. Structural characterisation of C30 highly branched isoprenoid alkenes (rhizenes) in the marine diatom Rhizosolenia setigera[J]. Tetrahedron Letters, 2001, 42(32):5583-5585. doi: 10.1016/S0040-4039(01)01063-2

    [24]

    Rowland S J, Robson J N. The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in Recent sediments and biota--A review[J]. Marine Environmental Research, 1990, 30(3): 191-216. doi: 10.1016/0141-1136(90)90019-K

    [25]

    Rowland S J, Belt S T, Wraige E J, et al. Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia[J]. Phytochemistry, 2001, 56(6): 597-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84704d069982252d75d14c5c5a86f79c

    [26]

    Stein R, Fahl K, Schreck M, et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean[J]. Nature Communications, 2016, 7:11148. doi: 10.1038/ncomms11148

    [27]

    Belt S T, Müller J. The Arctic sea ice biomarker IP25: A review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions[J]. Quaternary Science Reviews, 2013, 79(4):9-25. http://www.sciencedirect.com/science/article/pii/S0277379112005069

    [28]

    Müller J, Massé G, Stein R, et al. Variability of sea-ice conditions in the Fram Strait over the past 30, 000 years[J]. Nature Geoscience, 2009, 2(11):772-776. doi: 10.1038/ngeo665

    [29]

    Müller J, Wagner A, Fahl K, et al. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach[J]. Earth & Planetary Science Letters, 2011, 306(3):137-148. http://www.sciencedirect.com/science/article/pii/S0012821X11002275

    [30]

    Müller J, Stein R. High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice-ocean interactions during abrupt climate shifts[J]. Earth & Planetary Science Letters, 2014, 403:446-455. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f727631a5f95791f53c1fa631d36fc25

    [31]

    Xiao X, Fahl K, Müller J, et al. Sea-ice distribution in the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface sediments[J]. Geochimica et Cosmochimica Acta, 2015, 155:16-29. doi: 10.1016/j.gca.2015.01.029

    [32]

    Volkman J K. Lipid Markers for Marine Organic Matter[M]// Marine Organic Matter: Biomarkers, Isotopes and DNA.Berlin: Springer, 2006: 27-70.

    [33]

    Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 1998, 29(5-7):1163-1179. doi: 10.1016/S0146-6380(98)00062-X

    [34]

    Volkman J K, Barrett S M, Dunstan G A, et al. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom[J]. Organic Geochemistry, 1993, 20(1):7-15. doi: 10.1016/0146-6380(93)90076-N

    [35]

    Müller J, Werner K, Stein R, et al. Holocene cooling culminates in sea ice oscillations in Fram Strait[J]. Quaternary Science Reviews, 2012, 47(47):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb8140ee5cbdba8e734f1cfc53358a91

    [36]

    Belt S T, Massé G, Vare L L, et al. Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps[J]. Marine Chemistry, 2008, 112(3-4): 158-167. doi: 10.1016/j.marchem.2008.09.002

    [37]

    Vare L L, Massé G, Gregory T R, et al. Sea ice variations in the central Canadian Arctic Archipelago during the Holocene[J]. Quaternary Science Reviews, 2009, 28(13):1354-1366. http://www.sciencedirect.com/science/article/pii/S0277379109000419

    [38]

    Fahl K, Stein R. Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: New insights from biomarker proxy records[J]. Earth & Planetary Science Letters, 2012, 351-352(11): 123-133. http://www.sciencedirect.com/science/article/pii/S0012821X12003688

    [39]

    Xiao X, Fahl K, Stein R. Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): Indicators for organic-carbon sources and sea-ice coverage[J]. Quaternary Science Reviews, 2013, 79(8): 40-52. http://www.sciencedirect.com/science/article/pii/S0277379112005306

    [40]

    Cabedo-Sanz P, Belt S T, Knies J, et al. Identification of contrasting seasonal sea ice conditions during the Younger Dryas[J]. Quaternary Science Reviews, 2013, 79(4):74-86.

    [41]

    Navarro-Rodriguez A, Belt S T, Knies J, et al. Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for palaeo sea ice reconstructions[J]. Quaternary Science Reviews, 2013, 79(8):26-39. http://www.sciencedirect.com/science/article/pii/S0277379112005045

    [42]

    Stoynova V, Shanahan T M, Hughen K A, et al. Insights into Circum-Arctic sea ice variability from molecular eochemistry[J]. Quaternary Science Reviews, 2013, 79(4):63-73. http://www.sciencedirect.com/science/article/pii/S0277379112003940

    [43]

    Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57(4):54-64. http://www.sciencedirect.com/science/article/pii/S0146638013000107

    [44]

    Smik L, Cabedo-Sanz P, Belt S T. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index[J]. Organic Geochemistry, 2016, 92:63-69. doi: 10.1016/j.orggeochem.2015.12.007

    [45]

    Smik L, Belt S T. Distributions of the Arctic sea ice biomarker proxy IP25, and two phytoplanktonic biomarkers in surface sediments from West Svalbard[J]. Organic Geochemistry, 2017, 105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce839d31825f7e800d4556dc6c661aca

    [46]

    Xiao X, Stein R, Fahl K. MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers[J]. Paleoceanography, 2015, 30(7):969-983. doi: 10.1002/2015PA002814

    [47]

    Stein R, Fahl K, Gierz P, et al. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial[J]. Nature Communications, 2017, 8(1): 373. doi: 10.1038/s41467-017-00552-1

    [48]

    Murton J B, Bateman M D, Dallimore S R, et al. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean[J]. Nature, 2010, 464(7289):740-743. doi: 10.1038/nature08954

    [49]

    Hörner T, Stein R, Fahl K, et al. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)-A high-resolution biomarker study[J]. Quaternary Science Reviews, 2016, 143:133-149. doi: 10.1016/j.quascirev.2016.04.011

    [50]

    Polyak L, Belt S T, Cabedo-Sanz P, et al. Holocene sea-ice conditions and circulation at the Chukchi-Alaskan margin, Arctic Ocean, inferred from biomarker proxies[J]. Holocene, 2016, 26(11):1810-1821. doi: 10.1177/0959683616645939

    [51]

    Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean)[J]. Journal of Quaternary Science, 2017, 32(3):362-379. doi: 10.1002/jqs.2929

    [52]

    Legendre L, Martineau M J, Therriault J C, et al. Chlorophyll a, biomass and growth of sea-ice microalgae along a salinity gradient (southeastern Hudson Bay, Canadian Arctic)[J]. Polar Biology, 1992, 12(3-4):445-450. http://link.springer.com/article/10.1007/BF00243115

    [53]

    Kaufman D S, Ager T A, Anderson N J, et al. Erratum to: Holocene thermal maximum in the western Arctic (0-180°W) [J]. Quaternary Science Reviews, 2004, 23(18-19):2059-2060. doi: 10.1016/j.quascirev.2004.06.001

    [54]

    Belt S T, Vare L L, Massé G, et al. Striking similarities in temporal changes to spring sea ice occurrence across the central Canadian Arctic Archipelago over the last 7000 years[J]. Quaternary Science Reviews, 2010, 29(25-26):3489-3504. doi: 10.1016/j.quascirev.2010.06.041

    [55]

    Porinchu D F, Macdonald G M, Rolland N. A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago[J]. Journal of Paleolimnology, 2009, 41(1):177-188. doi: 10.1007/s10933-008-9263-x

    [56]

    Zabenskie S, Gajewski K. Post-glacial climatic change on Boothia Peninsula, Nunavut, Canada[J]. Quaternary Research, 2007, 68(2):261-270. doi: 10.1016/j.yqres.2007.04.003

    [57]

    Kolling H M, Stein R, Fahl K, et al. Short-term variability in late Holocene sea ice cover on the East Greenland Shelf and its driving mechanisms[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2017, 485:336-350. doi: 10.1016/j.palaeo.2017.06.024

    [58]

    Massé G, Rowland S J, Sicre M A, et al. Abrupt climate changes for Iceland during the last millennium: Evidence from high resolution sea ice reconstructions[J]. Earth & Planetary Science Letters, 2008, 269(3-4):565-569. http://www.sciencedirect.com/science/article/pii/S0012821X0800174X

    [59]

    Andrews J T. Seeking a Holocene drift ice proxy: non-clay mineral variations from the SW to N-central Iceland shelf: trends, regime shifts, and periodicities[J]. Journal of Quaternary Science, 2009, 24(7): 664-676. doi: 10.1002/jqs.1257

    [60]

    Axford Y, Andresen C S, Andrews J T, et al. Do paleoclimate proxies agree? A test comparing 19 late Holocene climate and sea-ice reconstructions from Icelandic marine and lake sediments[J]. Journal of Quaternary Science, 2011, 26(6):645-656. doi: 10.1002/jqs.1487

    [61]

    Cabedo-Sanz P, Belt S T, Jennings A E, et al. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation[J]. Quaternary Science Reviews, 2016, 146:99-115. doi: 10.1016/j.quascirev.2016.06.012

    [62]

    Xiao X, Zhao M, Knudsen K L, et al. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes[J]. Earth & Planetary Science Letters, 2017, 472:14-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e7b99c72cb9c49b95e74b2c56760bb4

    [63]

    Clotten C, Stein R, Fahl K, et al. Seasonal sea ice cover during the warm Pliocene: Evidence from the Iceland Sea (ODP Site 907)[J]. Earth & Planetary Science Letters, 2018, 481:61-72. http://www.researchgate.net/publication/320518930_Seasonal_sea_ice_cover_during_the_warm_Pliocene_Evidence_from_the_Iceland_Sea_ODP_Site_907

    [64]

    Max L, Riethdorf J R, Tiedemann R, et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15000 years[J]. Paleoceanography, 2012, 27(3):3213-3232.

    [65]

    Méheust M, Stein R, Fahl K, et al. High-resolution IP25 -based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18, 000 years[J]. Geo-Marine Letters, 2015, 36(2): 101-111.

    [66]

    Ruan J, Huang Y, Shi X, et al. Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: A multiple biomarker study[J]. Organic Geochemistry, 2017, 113:1-9. doi: 10.1016/j.orggeochem.2017.08.006

    [67]

    Kim J H, Rimbu N, Lorenz S J, et al. North Pacific and North Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews, 2004, 23(20-22):2141-2154. doi: 10.1016/j.quascirev.2004.08.010

    [68]

    Brown T A, Belt S T, Tatarek A, et al. Source identification of the Arctic sea ice proxy IP25[J]. Nature Communications, 2014, 5: 4197. doi: 10.1038/ncomms5197

    [69]

    Brown T A. Production and preservation of the Arctic sea ice diatom biomarker IP25[D]. University of Plymouth, 2011.

  • 加载中

(3)

计量
  • 文章访问数:  3646
  • PDF下载数:  110
  • 施引文献:  0
出版历程
收稿日期:  2018-04-18
修回日期:  2018-06-06
刊出日期:  2019-08-28

目录